ПАЛЕОМАГНЕТИЗМ ТРАППОВ ДОЛИН РЕК ПОДКАМЕННАЯ ТУНГУСКА И КОТУЙ: К ВОПРОСУ О РЕАЛЬНОСТИ ПОСЛЕПАЛЕОЗОЙСКИХ ОТНОСИТЕЛЬНЫХ ПЕРЕМЕЩЕНИЙ СИБИРСКОЙ И ВОСТОЧНО-ЕВРОПЕЙСКОЙ ПЛАТФОРМ.

Веселовский Р.В. 1 , И.Галле 2 , Павлов В.Э. 1

Вопрос о возможных относительных перемещениях Сибирской и Восточно-Европейской платформ в послепермское время неоднократно рассматривался в отечественной литературе. Храмов с соавторами (Храмов, 1982) предположили отодвигание северного края Сибирской платформы от Восточно-Европейской, а Баженов и Моссаковский (1986) сделали вывод о вращении Сибири относительно Восточно-Европейской платформы на 10° по часовой стрелке вокруг эйлеровского полюса, расположенного в относительной близости от границ платформы, вероятно в районе северного Казахстана.

В последние годы в связи с появлением новых палеомагнитных данных (Каменщиков и др., 1996; Павлов и др., 2001) мы снова возвращаемся к вопросу о возможности послепалеозойских относительных перемещений Сибирской и Восточно-Европейской платформ.

В 2000-2001 годах нами были выполнены исследования, направленные на расширение палеомагнитной базы данных, включающей только определения, отвечающие современным критериям палеомагнитной надежности. В долине нижнего течения р.Котуй мы опробовали 9 трапповых силлов и потоков; в долинах правых притоков р.Подкаменная Тунгуска – рек Б.Нирунда и Столбовая – мы изучили полностью перемагниченные траппами опорные разрезы осадочных пород среднего и верхнего ордовика, а также крупные (несколько километров в диаметре) гипабиссальные долеритовые интрузии.

температурной чистке. По образцы были подвергнуты детальной выделенным характеристическим компонентам естественной остаточной намагниченности были рассчитаны палеомагнитные направления и полюсы (таблица 1). Палеотектонические реконструкции, построенные с использованием данных, взятых с кривых кажущейся миграции полюса (КМП) Печерского и Диденко (1995) и Молостовского и Храмова (1997), указывают на то, что в послепалеозойское время Сибирская и Восточно-Европейская платформы сблизились на расстояние большее 1000 км. Однако все имеющиеся геологические данные противоречат этому выводу. Это вынудило нас несколько пересмотреть методику расчета относительных перемещений и использовать при построении палеореконструкций полюсы, датированные стратиграфически (нам представляется, что «стратиграфический» подход к сравнению палеомагнитных полюсов является более корректным, чем «геохронологический»). Мы использовали пермские и триасовые полюсы, отобранные из мировой базы данных (McElhinny M.W. and Lock J., 2002) таким образом, чтобы их «магнитный возраст» отвечал интервалу 230-270 млн. лет, а качество лабораторной обработки, определяемой параметром DC, было не менее 3. Сравнение сибирского среднего траппового полюса со средним Р-Т полюсом «стабильной Европы» показывает отсутствие между ними статистически значимых отличий. Это говорит о том, что на настоящий момент палеомагнитные данные не дают никаких оснований делать вывод об относительном движении Сибирской и Восточно-Европейской платформ в послепалеозойское время. Это не означает, что таких движений не было, однако, если они и были, их масштаб не превышал точности, достигнутой при определении сибирских трапповых и европейских Р-Т полюсов к настоящему времени.

Таблица. Палеомагнитные направления и палеомагнитные полюсы.

Кол-во объектов/	Координаты места отбора		D °	Ι°	K	α ₉₅ °	Координаты палеомагнитного полюса			
полюсов	λ°	ϕ°					Φ°	Λ°	${ m A_{95}}^{\circ}$	K
р.Котуй										
5	102.4	73.0	111.0	74.7	88.9	8.2	52.7	148.4	13.9	31.1
р.Большая Нирунда										
4	95.3	62.0	264.6	-76.0	177.7	6.9	54.4	143.8	12.0	59.6
р.Столбовая										
7	91.5	62.1	76.7	74.1	201.8	6.5	55.3	148.7	11.2	68.3
Средний трапповый полюс для Сибирской платформы										
(с учетом полюсов для районов Норильска ¹ , Западного Таймыра ² , бассейнов рек Вилюя ³ и Мойеро ⁴)										
7							56.2	151.7	3.8	255.4
Средний P_2 - T_1 полюс для «стабильной Европы» 5										
8							49.7	154.9	9.3	52.4

 1 Павлов и др., 2001; 2 Gurevich et al, 1995; 3 Kravchinsky et al., 2002; 4 Каменщиков и др., 1996; 5 McElhinny M.W., Lock J., 2002. Примечание к таблице: φ , λ – широта и долгота места отбора проб; D, I, K, α_{95} – характеристики распределения Фишера: склонение, наклонение, кучность и радиус круга доверия соответственно; Φ , Λ , A_{95} – широта, долгота и радиус круга доверия палеомагнитного полюса..

Следующим шагом в решении этой проблемы должно стать получение новых, еще более точных определений Р-Т полюсов Европы и Сибири. Последнее относится в значительной степени к европейскому

¹ Институт физики Земли РАН, Москва, E-mail: vesselsrv@mtu.ru

² Парижский институт физики Земли (IPGP CNRS)

полюсу, поскольку точность определения сибирского полюса уже сейчас находится вблизи пределов возможностей палеомагнитного метода.

Работа выполнена при поддержке РФФИ, гранты №№ 00-05-64008 и 01-05-64819.