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Abstract

The rapid rotation of planets causes cyclonic thermal turbulence in their cores which
may generate the large-scale magnetic fields observed outside the planets. We consider
the model which enables us reproduce the typical features of small-scale geostrophic flows
in physical and wave spaces. We present estimates of kinetic and magnetic energy fluxes
as a function of the wave number. The joint existence of forward and inverse cascades are
demonstrated. We also consider the mechanism of magnetic field saturation at the end of
the kinematic dynamo regime.

1 Introduction

Many astrophysical objects such as galaxies, stars, the Earth, and some planets have large-
scale magnetic fields that are believed to be generated by a common universal mechanism - the
conversion of kinetic energy into magnetic energy in a turbulent rotating shell. The details,
however, and thus the nature of the resulting field, differ greatly. The challenge for the dy-
namo theory, see, e.g., [Hollerbach and Rüdiger(2004)], is to provide a model that can explain
the visible features of the field with realistic assumptions of the model parameters. Calcula-
tions for the entire planet are done using either spectral models [Kono and Roberts(2002)] or
finite-volume methods [Hejda and Reshetnyak(2004), Harden and Hansen(2005)] and finite dif-
ferences [Kageyama and Sato(1997)] and have demonstrated beyond reasonable doubt that the
turbulent 3D convection of the conductive fluid can generate a large-scale magnetic field similar
to the one associated with small random fluctuations. However, both these methods cannot
cover the enormous span of scales required for a realistic parameter set. Even for the geody-
namo (which is quite a modest case on the astrophysical scale) the hydrodynamic Reynolds
number estimated on the west-drift velocity is Re ∼ 109. In addition, planets are rapidly rotat-
ing bodies. Thus, the time scale of the large-scale convection in the Earth’s core is ∼ 103 years,
during which the planet itself makes ∼ 106 revolutions (in other words, the Rossby number
Ro ∼ 10−6). As a result, there is an additional spatial scale ∼ E−1/3 L, where E ∼ 10−15 is the
Ekman number [Chandrasekhar(1961), Busse(1970)], associated with the cyclonic structures
elongated along the axis of rotation, which is much larger than Kolmogorov’s dissipation scale
ld ∼ Re−4/3 L, which, however, is still too small to be resolved in the numerical simulations
with the present resolution l ∼ (10−3 ÷ 10−2)L.

The presence of rapid rotation leads not only to a change from the spatial, uniform, isotropic,
Kolmogorov-like solution to the quasi-geostrophic (magnetostrophic) form, but to rather more
fundamental consequences. The rapid rotation leads to the degeneration of the third dimen-
sion (along the axis of rotation) and can cause an inverse cascade in the system. Inverse
cascades are a well-known phenomenon in two-dimensional turbulence and are a good ex-
ample of self-organization, when the large-scale structures are fed by small-scale turbulence
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[Kraichnan and Montgomery(1980), Tabeling(2002)]. As the quasi-geostrophy is an interme-
diate state between two-dimensional and three-dimensional flows, the quasi-geostrophic tur-
bulence may exhibit simultaneously features similar to both the extreme cases: 2D and 3D.
Bellow we consider the behavior of the energy fluxes in the wave space for regimes based on the
Boussinesque thermal convection. For simplicity we consider the Cartesian geometry, which is
simpler for modeling of rapidly rotating dynamo systems and was used in many geodynamo
research projects [Roberts(1999), Jones and Roberts(2000), Buffett(2003)].

2 Dynamo equtions

2.1 Equations in physical space

The geodynamo equations for an incompressible fluid (∇ ·V = 0) in a volume of scale L rotat-
ing with angular velocity Ω in the Cartesian system of coordinates (x, y, z) in its traditional
dimensionless form can be expressed as follows:

∂B

∂t
= ∇× (V ×B) + q−1 ∆B

E Pr−1

[
∂V

∂t
+ (V · ∇) V

]
= −∇P − 1z ×V+

RaT z1z + (∇×B)×B + E ∆V
∂T

∂t
+ (V · ∇) (T + T0) = ∆T.

(1)

Velocity V, magnetic field B, pressure P and the typical diffusion time t are measured in units of

κ/L,
√

2Ωκµρ;, ρκ2/L2 and L2/κ respectively, where κ is the thermal diffusivity, ρ is the density,

µ the permeability, Pr =
κ

ν
is the Prandtl number, E =

ν

2ΩL2
is the Ekman number, ν is the

kinematic viscosity, η is the magnetic diffusivity, and q = κ/η is the Roberts number. Ra =
αg0δTL

2Ωκ
is the modified Rayleigh number, α is the coefficient of volume expansion, δT is the

unit of temperature, for more details see [Jones(2000)] , g0 is the gravitational acceleration, and
T0 = 1−z is the heating from below. The problem is closed with periodical boundary conditions
in the (x, y) plane. In the z-direction, we use simplified conditions [Cattaneo et al(2003)]:

T = 0, Vz =
∂Vx
∂z

=
∂Vy
∂z

= 0, Bx = By =
∂Bz

∂z
= 0 at z = 0, 1.

2.2 Equations in wave space

To solve problem (1) we apply the pseudo-spectral approach [Orszag(1971)] frequently used
in geodynamo simulations [Jones and Roberts(2000), Buffett(2003)]. The equations are solved
in the wave space. To calculate the non-linear terms one needs to make the inverse Fourier
transform, then calculate the product in physical space, make the Fourier transform of the
product, and finally calculate the derivatives in wave space. After eliminating the pressure
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Figure 1: Regime R1. Sections of temperature distribution. . All sections correspond to the
middle of the cube. The field ranges are (0, 1) – left, (0.46, 0.54) – right.

Figure 2: Distribution of the Vx-component of the velocity field with ranges (−248, 253),
(−143, 144).

using the conditions of free divergency k ·V = 0, k ·B = 0, we arrive at:[
∂B

∂t
+ q−1 k2B

]
k

= [∇× (V ×B)]k

E

[
Pr−1 ∂V

∂t
+ k2V

]
k

= kPk + Fk

[
∂T

∂t
+ k2T

]
k

= − [(V · ∇)T + Vr]k

(2)

with

Pk = −k · Fk

k2
, k2 = kβkβ, β = 1 . . . 3

Fk =
[

Pr−1 V × (∇×V) + RaT1z−
1z ×V + (B · ∇) B

]
k
.

(3)

For integration in time we use the explicit Adams-Bashforth (AB2) scheme for non-linear terms.
The linear terms are treated using the Crank-Nicolson (CN) scheme. To resolve the diffusion
terms we use the well-known trick which helps to increase the time step significantly. Consider
equation

∂A

∂t
+ k2A = U. (4)

Alter it to read
∂Aek

0γt

∂t
= U ek

2γt (5)

and then apply the CN scheme.
The most time consuming part of our MPI code are the Fast Fourier transforms. To make

our code more efficient we use various modifications of known FFT algorithms, which take into
account special kinds of symmetry of the fields. The optimal number of processors for the grids
1283 is n ∼ 50. The scalability tests demonstrated even the presence of superacceleration if the
number of processors < n.

3 Basic properties of the fields

We consider simulations without rotation similarly to [Meneguzzi and Pouquet(1989)] and with
rotation for two regimes with different amplitudes of the heat sources:

NR: Regime without rotation, Ra = 6 · 106, Pr = 1, E = 1, q = 10, Re ∼ 2.5 · 103.

R1: Regime with rotation, Ra = 1.3 · 103, Pr = 1, E = 2 · 10−6, q = 10, Re ∼ 1.6 · 103.

R2: Regime with rotation, Ra = 2.1 · 103, Pr = 1, E = 2 · 10−6, q = 10, Re ∼ 3 · 103.

The first (NR) regime is close to the typical Kolmogorov convection, for more details see
[Meneguzzi and Pouquet(1989)]. Inclusion of rotation (regime R1, Figs 1-5) leads to the trans-
form of the isotropic convective structures to the cyclonic state with the horizontal scale ∼ E1/3

(kc ∼ E−1/3) [Chandrasekhar(1961)]. Inclusion of the magnetic field (the full dynamo regime
with magnetic energy comparable with the kinetic energy in order of magnitude) does not
change the structure of the convective patterns too much [Jones(2000)]. At the same time, the
spectra of magnetic energy are quite different and have no well-pronounced maximum at kc.
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Figure 3: Distribution of the Vz-component of the velocity field with ranges (−675, 701),
(−153, 157)

Figure 4: Distribution of the Bz-component of the velocity field with ranges (−1.44, 1.14),
(−1.88, 2.37)

The increase of the Rayleigh number leads to the decrease of the relative role of rotation
and should decrease the peak of the kinetic spectra energy, which is in accordance with the
spectra for regime R2, Fig. 5. In principle, a further increase of Ra should lead to the original
Kolmogorov state, similar to NR with the spectrum law ∼ k−5/3, Fig. 5. However, we emphasize
that the information on the spectra is not enough to judge, if the role of rotation is negligible
or not, and additional analysis is needed. The argument is the following: rotation leads to the
degeneration of the third dimension (along the z-axis) [Batchelor(1953)]. On the other hand, in
isotropic two-dimensional systems, the spectrum of the kinetic energy also has a−5/3-slope, but
the direction of the energy transfer in the system is inverse. In contrast to the three-dimensional
turbulence, where the energy transfers from the small wave number, at which energy is injected,
to the larger dissipative wave number, in two-dimensional turbulence the energy transfers from
the large wave numbers to the small ones1. As the quasi-geostrophic turbulence inherits the
properties of the both systems, 2D and 3D, [Hossain(1994), Constantin(2002)], we will consider
the behavior of the energy fluxes in wave space more carefully.

4 Energy fluxes

To analyze the energy transfer in the wave space, we follow [Frisch(1995)]. Let us ecompose
physical field f into a sum of low-frequency and high-frequency counterparts: f(r) = f<(r) +
f>(r), where

f<(r) =
∑
|k|≤K

f̂k e
ikr, f>(r) =

∑
|k|>K

f̂k e
ikr. (6)

For any periodical functions f and g one has the relation [Frisch(1995)]:

<
∂f

∂x
>= 0, <

∂g

∂x
>= 0,

< g
∂f

∂x
>= − < f

∂g

∂x
>, < f>g< >= 0,

(7)

where

< f(r) >= V−1
∫
V

f(r) dr3
(8)

stands for averaging of f over volume V . Multiplying the Navier-Stokes equation by V< and the
induction equation by B< leads to the equations of the integral fluxes of the kinetic EK = V 2/2
and magnetic EM = B2/2 energies from k ≥ K to k < K:

ΠK =< (V × rotV) ·V< >,

ΠM =< rot (V ×B) ·B< >
(9)

and for the flux of the Lorentz work:

ΠL =< (rotB×B) ·V< > . (10)

Introducing

TK(k) = −∂ΠK

∂k
, (11)

leads to the obvious relation for EK in k-space:

∂EK(k)

∂t
= T (k) + F (k) +D(k), (12)

1There is also a direct cascade of enstrophy.
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Figure 5: On the left is the spectrum of the kinetic energy for NR (red), R1 (green), R2
(blue). On the right is the spectrum of the magnetic energy. The straight line corresponds to
Kolmogorov’s spectrum ∼ k−5/3.

Figure 6: Normalized fluxes of kinetic TK (on the left) and magnetic TM (on the right) energies
in wave space: NR (red), R1 (green), R2 (blue).

where k = |k|, T (k) is the energy flux from harmonics with different k, F (k) is the work of
external forces and D(k) = −k2EK(k) is a dissipation. The accurate form of T reads:

TK = −∂ΠK

∂k
,

∞∫
k=0

TK(k) dk = 0,

TM =
∂ΠM

∂k
, TL =

∂ΠL

∂k
.

(13)

Taking into account that rot (V ×B) = − (V · ∇) B + (B · ∇) V, one has: TM = TN − TL,
where

TN = −∂ΠN

∂k
,

∞∫
k=0

TN(k) dk = 0,

ΠN =< ((V · ∇) B<) ·B< > .

(14)

Fig. 6 shows the fluxes of kinetic TK and magnetic TM energies for the regimes mentioned above.
Regime NR for TK demonstrates the well-known behavior for the direct Kolmogorov’s cascade
in 3D. For large scales TK < 0, these scales are donors and provide energy to the system. On the
other hand, the harmonics with the large k absorb energy. The two-dimensional turbulence ex-
hibits mirror-symmetrical behavior relative to the axis of the absciss [Kraichnan and Montgomery(1980)].
In this case the energy cascade is inverse.

Rotation changes the behavior of the fluxes of kinetic energy essentially. The leading order
wave number is kc. For k > kc we also observe the direct cascade of energy TK > 0. The
maximum of TK is shifted relative to the maximum of the energy to large k, the larger, the
larger Re. For k < kc, the behavior is more complex: for small k, the inverse cascade of kinetic
energy takes place, TK > 0. On the other hand, for the larger region of k (0 . . . kc) we still have
the direct cascade TK < 0. The increase of Re leads to the narrowing of the region with the
inverse cascade and to the increase of the inverse flux. One may suggest that the change of the
sign of flux TK at k < kc is connected with the appearance of the non-local energy transfer:
so that the energy to the large-scales k1 comes from modes |k2| ∼ |k3| � |k1|, k1 = k2 + k3

[Waleffe(1992)]. In the absence of the magnetic field the maximum of TK(k = 1) appears.
Hence, in the case with rotation, two cascades of kinetic energy (direct and inverse) take place
simultaneously.

Now we consider the magnetic part. In contrast to TK , TM includes not only the advective
term, but also the generative term. This leads to integral TM being positive over all k. Moreover,
TM is positive for any k. The position of the maximum of TM is close to those in the spectra
of EM , TK .

It is evident that, for planetary cores, the distance between the maxima in fluxes TM for
NR and R1, R2 can be quite large, however, not as large as kc. This statement concerns the
condition on magnetic field generation, which holds when the local magnetic Reynolds number
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Figure 7: Normalized fluxes of the generation term −TL (on the left) and advective c TN (on
the right) terms in wave space: NR (red), R1 (green), R2 (blue).

rm > 1 on the scale 1/k: rm =
vk
kη

> 1 and that for the planets η � ν. At the same moment, the

fluxes with small k are small, i.e. the system is in a state of statistical equilibrium: dissipation
on small scales is negligible.

Now we examine the origin of the magnetic energy on scale 1/k: Is it conncted with the
energy transfer from the other scales or is it a product of real generation on this scale?

Fig. 7 demonstrates the fluxes of −TL concerned with magnetic field generation. The maxi-
mum of the generation term without rotation is on the large scale, while for the rotating system
it is at ∼ 1/kc. Interestingly, for the rotating system there is a region −TL < 0 for large k,
where the magnetic field reinforces convection. For regime NR, −TL drops quickly because of
the kinetic energy decrease (Fig. 5). As a result we have: for the rotating system, the magnetic
field is produced by the cyclones, while the large-scale dynamo operates for the non-rotating
system.

Now we estimate the role of the advective term TN separately. For the non-rotating regime,
TN and TK are similar: the direct cascade takes place. For the rotating system, region k ∼ kc
is a source of energy. In contrast to TK , TN has no positive regions at small k, i.e. the inverse
cascade of the magnetic energy, related to the advective term in this region is absent. We draw

attention to the amplitudes of fluxes TM , −TL, TN : for all three cases it holds that
|TM |
|TL|

∼ 10−1,

i.e. there exist two fluxes of magnetic energy in wave space with opposite directions. The first
flux is related to the traditional energy transfer of the energy over the spectrum (advective
term) and with the flux of the Lorentz work. The regions of maximal magnetic field generation
coincide with the regions of the most effective magnetic energy transfer TN (from small k to
large k). This balance leads to anequipartition state, when dissipation takes place at large k.

Note that the full magnetic flux TM (Fig. 6) is localized at k � 1. For the non-rotating
system, this is because the mean helicity and α-effect are zero [Zeldovich et al.(1983)]. Thus
the inverse cascade of the magnetic energy to small k is absent.

For the rotating system there is a balance of the energy injection due to the Lorentz force
and its wash-out because of advection. The latest effect reduces the α-effect.

The magnetic fields of the planets are the main sources of information on the processes
in their liquid cores on the time scales of 102 − 103 years or longer. While the poloidal part
of the magnetic field can be observed on the planet’s surface, the largest component of field
(toroidal) as well as the kinetic energy distrubution over the scales is absolutely invisible for
the observer outside the core. Moreover, due to the finite conductivity of the mantle, even
the poloidal part of the magnetic field is cut off at k � kc. In other words, the part of the
spectrum observable on the planets surface is only a small part (not even the largest) of the
whole spectrum of the field. That is why the importance of the numerical simulation can hardly
be overestimated. Here we have shown that, in the quasigeostrophic state considered, both the
cascades (direct and inverse) exist simulataneously. This is a challenge for the turbulent models
of the geodynamo. The other interesting point is the balance of the magnetic energy flux due
to two mechanisms: advection and generation. This balance is the reason why the exponential
growth of the magnetic energy stopps at the end of the kinematic dynamo regime.
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