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Stability problem in the dynamo
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ABSTRACT
It is shown that the saturated α-effect taken from the non-linear dynamo equations for the
thin disc can still produce exponentially growing magnetic field in the case when this field
does not feed back on the α. For negative dynamo number (stationary regime) stability is
defined by the structure of the spectra of the linear problem for the positive dynamo numbers.
The stability condition for the oscillatory solution (positive dynamo number) is also obtained
and related to the phase shift of the original magnetic field, which produced saturated α and
magnetic field in the kinematic regime. The results can be used to explain the similar effect
observed in shell model simulations as well as in 3D dynamo models in the plane layer and
sphere.
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1 IN T RO D U C T I O N

It is believed that the variety of the magnetic fields observed in
astrophysics and experiments can be explained in terms of the dy-
namo theory (e.g. Hollerbach & Rüdiger 2004). The main idea is
that kinetic energy of the conductive motions is transformed into the
energy of the magnetic field. Magnetic field generation is a thresh-
old phenomenon: it starts when the magnetic Reynolds number Rm

reaches its critical value Rcr
m . After that, magnetic field grows ex-

ponentially up to the moment when it already can feed back on
the flow. This influence does not result in the simple suppression
of the motions and reduction of Rm; rather, it results in changes to
the spectra of the fields closely connected to constraints caused by
conservation of the magnetic energy and helicity (Brandenburg &
Subramanian 2005). The other important point is the effects of the
phase shift and coherence of the physical fields before and after the
onset of quenching discussed in Tilgner & Brandenburg (2008).

As a result, even after quenching the saturated velocity field is still
large enough so that Rm � Rcr

m . Moreover, the velocity field taken
from the non-linear problem (when the exponential growth of the
magnetic field stopped) can still generate exponentially growing
magnetic field provided that the feedback of the magnetic field
on the flow is omitted (kinematic dynamo regime; Tilgner 2008;
Tilgner & Brandenburg 2008; Cattaneo & Tobias 2009; Schrinner
et al. 2009). In other words, the problem of stability of the full
dynamo equations including the induction equation, the Navier–
Stokes equation with the Lorentz force, differs from the stability
problem of the single induction equation with the given saturated
velocity field taken from the full dynamo solution: stability of the
first problem does not provide stability of the second one. The
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problem appears to be complex because some regimes close to Case
1 from the geodynamo benchmark (Tilgner 2008; Schrinner et al.
2009) are stable in contrast to solutions with periodical boundary
conditions, and the influence of the boundary conditions can be
important.

Here we consider the effect of such a type of stability on an
example of the model of a galactic dynamo in the thin disc, as well
as some applications to the dynamo in the sphere.

2 DYNAMO IN THE THI N DI SC

One of the simplest galactic dynamo models is a one-dimensional
model in the thin disc (Ruzmaikin, Shukurov & Sokoloff 1988):

∂A

∂t
= αB + A′′,

∂B

∂t
= −DA′ + B ′′, (1)

where A and B are azimuthal components of the vector potential and
magnetic field, α(z) is a kinetic helicity, D is a dynamo number,
which is a product of the amplitudes of the α- and ω-effects, and
primes denote derivatives with respect to a cylindrical polar coor-
dinate z. Equation (1) is solved in the interval −1 ≤ z ≤ 1 with the
boundary conditions B = 0 and A′ = 0 at z = ±1. We look for a
solution of the form

(A, B) = eγ t (A(z), B(z)). (2)

Substituting (2) in (1) yields the following eigenvalue problem:

γA = αB+A′′,

γB = −DA′ + B′′, (3)

where the constant γ is the growth rate. So as α(−z) = −α(z) is
an odd function of z, the generation equations have an important
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property: system (3) is invariant under the transformation z → −z

when (Parker 1971)

A(−z) = A(z), B(−z) = −B(z)

or

A(−z) = −A(z), B(−z) = B(z). (4)

Therefore, all solutions may be divided into two groups: odd on
B(z), dipole (D) and even, quadrupole onB(z). Then we can replace
−1 ≤ z ≤ 1 with the interval 0 ≤ z ≤ 1 and the following boundary
conditions at z = 0: A′ = 0, B = 0(D) and A = 0, B′ = 0(Q).
Usually, α = α0 with α0(z) = sin(πz) is used; see also Soward
(1978) for α0(z) = z dependence, more appropriate for analytical
applications. Further, the sinusoidal form of α0(z) is used.

System (3) has a growing solution, �γ > 0, when |D| > |Dcr|.
For D < 0 the first exciting mode is quadrupole with Dcr ≈ −8
and 	γ = 0: the solution is non-oscillatory.1 ForD > 0 the leading
mode is oscillatory dipole, 	γ 
= 0 with a higher threshold of
generation:Dcr ∼ 200. Putting non-linearity of the form

α(z) = α0(z)

1 + Em
for |B| � 1 (5)

in (1), where Em = (B2 + A′2)/2 is a magnetic energy, gives
stationary solutions for Q kind of symmetry and quasi-stationary
solutions for D; see discussion of various forms of non-linearities in
Beck et al. (1996). The property of the non-linear solution is mostly
defined by the form of the first eigenfunction.

Now, in the spirit of Tilgner & Brandenburg (2008) and Cattaneo
& Tobias (2009) we add to (1) equations for the new magnetic field
(Â, B̂) with the same α (5), which depends on (A, B) and does not
depend on (Â, B̂):

∂A

∂t
= αB + A′′,

∂B

∂t
= −DA′ + B ′′,

∂Â

∂t
= αB̂ + Â′′,

∂B̂

∂t
= −DÂ′ + B̂ ′′. (6)

Numerical simulations demonstrate that for the negative D both
(A, B) and (Â, B̂) are steady; however, the final magnitudes of
(Â, B̂) depend on the initial conditions for (Â, B̂), see Fig. 1.
The procedure was the following: equations (1) and (5) for (A, B)
were integrated up to the moment t = t0, then the full system (6)
was simulated with the initial conditions for (Â, B̂) in the form
(Â, B̂)|t=t0 = (A, B)|t=t0 (1 + Cε), where ε ∈ [−0.5, 0.5] is a
random variable andC is a constant. Both vectors (A, B) and (Â, B̂)
are stable in time; however, the final magnitude of Êm for C 
= 0
slightly depends on C. The presence of alignment of the fields
(A, B) and (Â, B̂) follows from linearity and homogeneity of the
equations for (Â, B̂), where α(z, Em) is given. Later we consider
the stability of (Â, B̂) in more detail.

ForD > 0 the situation is different, resembling that of instability
described in Cattaneo & Tobias (2009), Tilgner (2008), Tilgner &
Brandenburg (2008) and Schrinner et al. (2009) for more sophisti-
cated models: field (Â, B̂) oscillates and starts to grow exponen-
tially, see Fig. 2. Note that no regime in oscillations for (Â, B̂) is

1 For our Galaxy the usual estimate isD = −10.

Figure 1. Evolution of magnetic energy Em for t < t0 governed by the
system (1) and (5) forD = −10. In the moment t0 = 300 the new magnetic
field (Â, B̂) with the initial conditions defined by constant C is switched on,
see (6) and (5). Plots for Em and Êm (with C = 0) for t > t0 coincide. All
the solutions are stationary.

Figure 2. Evolution of magnetic energy Em for t < t0 governed by the
system (1) and (5) for D = 300. In the moment t0 = 30 the new magnetic
field (Â, B̂) with the initial conditions defined by constant C is switched on,
see (6) and (5). Plots for Em and Êm (with C = 0) for t > t0 coincide. For
C 
= 0 after the intermediate regime, the phase shift θ between Em and Êm

increased and the exponential growth of Êm started.

observed. The other specific feature is the delay of (Â, B̂) relative
to (A, B): θ ≈ −(π/3).

If Em in (5) is averaged over the space, so that α is steady, then
the instability disappears. The question arises: does the instability
depend on stationarity, or does it depend on something else?

It is known that for D < 0 stability of the system (3) and (5),
which has a stationary solution, is tightly bound to the behaviour
of the linear solution of (3) for D > 0 (Reshetnyak, Sokoloff
& Shukurov 1992). Note that for the complex form of (3) it is
equivalent to the solution of the conjugate problem.

Let (Ã, B̃) = (A + a, B + b), where (A, B) is a solution of
the non-linear problem and (a, b) is a perturbation with the same
boundary conditions as for (A, B). Putting (Ã, B̃) in (3) with α ≈
α0 + (∂α/∂B)b yields equations for (a, b):2

γ a = αeb + a′′,

γ b = −Da′ + b′′,
(7)

where αe = α + (∂α/∂B)B for α = [α0/(1 + B2)] is

αe = 1 − B2

(1 + B2)2
α0 ∼ − α0

B2
for |B| � 1. (8)

The behaviour of the αω-dynamo (3) is defined by the sign ofDα,
and its change in the perturbed equations (7) is important. In other
words, instead of non-linear equations (3) and (5) we come to the
linear problem (3) with given α = α(z, Em) and effective dynamo

2 It is usually supposed that in αω-dynamo models B � A′.
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numberDe = −(D/B2). Then the stability of fields (Â, B̂) for the
negativeD can be explained as follows. For the negativeD solution
(Â, B̂) is finite and stable, because the threshold of generationDcr

+
for (3) is much larger thanDe, Dcr

+ � De. Field (Â, B̂) is defined
up to an arbitrary factor, which corresponds to alignment of the
vectors (A, B) and (Â, B̂). Note thatDcr

+  De does not guarantee

that (Â, B̂) will grow exponentially due to non-linearity (5).
It is worthy of note that the non-linear solution of (1), (5) and (6),

(5) demonstrates similar stationary behaviour even for D ∼ −103

in spite of the fact thatDcr
+ for the quadrupole oscillatory mode for

positive D is ∼200. The reason is that the dynamo system tends
to the state of the strong magnetic field with B ∼ D1/2, so that
α ∼ 1/B2, leaving De at the level of the first mode’s threshold of
generation.

For positive D (A, B), and therefore α(B), oscillate and one
needs additional information on correlation of the waves. Here, in-
stead of (8) we get αe ∼ −(α0B̂/|B|3). If the phase shift between B
and B̂ is negligible, then the α-effect is saturated and time evolution
of (A, B) and (Â, B̂) is similar. However, simulations demonstrate
in Fig. 2 that field (Â, B̂) delays relative to (A, B). This is a typical
situation, when parameter resonance takes place: α is modulated
by signal with frequency � ∼ 2ω, ω = 	γ , see Dawes & Proctor
(2008) for details of the spatial resonance. This assumption is sup-
ported by the fact that instability disappears when in (5) a steady α,
averaged in time, is used. Note that the situation is the same for the
problem in the full volume −1 ≤ z ≤ 1, where instability depends
on the form of quenching in the same way.

To demonstrate what happens, we consider how the delay θ of
(Â, B̂) relative to (A, B) changes the production of Â2 + B̂2 near
the threshold of generationDcr

+. We start from the linear analysis of
the system in the form

iωÂ = αB̂ − k2Â,

iωB̂ = −iDcr
+kÂ − k2B̂. (9)

From the condition of solvability for (9): (k2 + iω)2 = −iDcr
+kα0

with α = α0, it follows that ω2 = k4 = 1. The other prediction of the
linear analysis is the phase shift ϕ between Â and B̂: ϕ = ±(π/4),
which is twice as small as for the non-linear regime (Tilgner &
Brandenburg 2008), so that for the non-linear regime the maximal
Â is when B̂ is zero and quenching is absent.

Then putting in (6) B = b sin(x − t), Â = sin(x − t + ϕ +
θ ), B̂ = sin(x − t + θ ) and α = 1/(1 + B2), we obtain how
the generation depends on θ . The equation for B̂ does not include
the original field (A, B), so we consider only production of Â2.
Then δÂ(ϕ, θ ) = α0

∫ 2π

0 [B̂Â/(1 + B2)] dt . If |�| � 1, where

� = [δÂ(ϕ, θ )/δÂ(ϕ, 0)], then (Â, B̂) is unstable.
The exact equation for δÂ is

δÂ(ϕ, θ ) = h1 + h2 tan(ϕ),

h1 = cos(θ )2(4 − 321/2) − 2(21/2 − 1)

21/2(21/2 − 1)
,

h2 = sin(2θ )(321/2 − 4)

23/2(21/2 − 1)
. (10)

If θ = 0 then h2 = 0 and Â(ϕ, 0) = h1 = 21/2 − 4. Then, for
θ = (π/3), h1 = (21/2 − 10)/4, h2 = −(31/2/4)(21/2 − 1), � at
ϕ → ±(π/2) is singular and instability appears.

Summarizing the results for the steady and oscillatory dy-
namos, we have the following predictions for the stability of field
(Â, B̂). For D < 0 (A, B) is steady and (Â, B̂) is unstable when
|D/(Dcr

+B2)| � 1.

When (A, B) oscillates then (Â, B̂) continues to oscillate with
(A, B) increasing the phase shift between (Â, B̂) and (A, B). Then
instability caused by the parameter resonance may arise.

3 C O N C L U S I O N S

Here we argue that stability of the kinematic αω-dynamo problem
with the α-effect taken from the weakly non-linear regime near the
threshold of generation can be predicted from knowledge of the
threshold of generation of the linear problem with the opposite sign
of the dynamo number. It appears that in spite of the fact that the
magnetic field has already saturated α, it still can generate magnetic
field if spectra of the linear problem are similar for dynamo num-
ber D with the opposite sign. So, as D depends on the product of
the α and ω effects, a similar analysis can be performed with the
ω-quenching, usually used in geodynamo models, see e.g. Soward
(1978), as well as with the feedback of the magnetic field on dif-
fusion. It is likely that for the more complex systems, the velocity
field, taken from the saturated regime, with many exited modes will
always generate magnetic field if the Lorentz force is omitted.

So as non-linearity (5) has quite a general form, we consider
applications of these results to some other dynamo models. Linear
analysis of the axisymmetrical αω-equations gives the following
(see Moffatt 1978 and references therein): for positiveD (which is
believed to be in the Earth) in the presence of the meridional veloc-
ity Up the first exciting mode is dipole with 	γ = 0. Reduction of
Up first leads to an oscillatory dipole solution (regime of frequent
reversals; Braginskii 1964). The further reduction of Up gives the
quadrupole oscillatory regime with a larger value of Dcr. For neg-
ative D and Up 
= 0 the first mode is quadrupole with 	γ = 0.
Up → 0 gives a non-oscillatory dipole mode with decreased Dcr

(see Meunier et al. 1997 for more details). In contrast to the dynamo
in the disc the thresholds of generation for positive and negativeD
in the sphere are of the same order, and the situation with stability
of the field B̂ is uncertain, and can depend on the particular form of
the α- and ω-effects. Anyway, stability of B̂ for the steady regime
is more likely.

In accordance with Cattaneo & Tobias (2009), shell models of
turbulence demonstrate exponential growth of the magnetic field.
This case, as well as 3D simulations of the turbulence in the box,
which have the same instabilities, corresponds to the oscillatory
regimes and using our predictions should be unstable.

In the case of the 3D dynamo in the sphere, simulations demon-
strate different behaviour of B̂ (Tilgner 2008; Schrinner et al. 2009).
For small Rayleigh numbers, when the preferred solutions are dipole
and oscillatory and close to the single mode structure in Case 1 in
Christensen et al. (2001), B̂ is finite. An increase of the Rossby
number (Schrinner et al. 2009) leads to the turbulent state and B̂
becomes unstable. It means that stability does not depend on the
type of the boundary conditions as could be supposed from Tilgner
(2008) and Tilgner & Brandenburg (2008), where vacuum and pe-
riodical boundary conditions for the magnetic field were used. Fol-
lowing our analysis, the more important factor for stability is the
value of the time shift θ between the original magnetic field B and
the passive field B̂, which is still a free parameter in our model.
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