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Abstract—The effects of a time lag in the magnetic quenching of the α effect is considered for an oscillating
magnetic field in a Parker dynamo. The hypothesis of a parametric resonance in the system is justified, a
modification of the solution is found, and the appearance of processes with periods much longer than the
fundamental oscillation period is demonstrated.
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1. INTRODUCTION

Dynamo theory, which can explain the persistence
of natural magnetic fields over time intervals far ex-
ceeding the characteristic decay times (see, e.g., [1]),
is a nonlinear theory. In dynamo theory, the energy
of thermal and radioactive sources and the energy
released due to the differentiation of matter is con-
verted into the energy of magnetic fields. Even the
system describing convection is nonlinear. The in-
clusion of a magnetic field in the model can only
increase the degree of nonlinearity, since the magnetic
field affects the velocity field via the Lorentz force,
which is quadratic in terms of the magnetic field. Even
the simple Boussinesq model of thermal convection
with a magnetic field contains four terms in which
the temperature field, T , the velocity field, V, and
the magnetic field, B, appear in products. This gives
rise to extended field spectra, which can clearly be
observed in many objects.

It is known from the general theory of nonlin-
ear systems [2] that resonance instabilities can de-
velop in multimodal models. Interest in such phe-
nomena described by the dynamo theory has been
maintained over many years, in particular, by “mal-
function” effects in the dynamo action, which result
in geomagnetic-field reversals and suggest explana-
tions for the Maunder minimum in the context of
the solar dynamo (see [3] for various scenarios of
this phenomenon). Studies in this area prompted the
recent numerical simulations [4–7], which demon-
strated the development of instabilities in the process
of magnetic-field generation by flows found by solving
the full nonlinear dynamo system, including the back
influence of the magnetic field on the flow. A small
magnetic-field perturbation proves to be sufficient
for the magnetic field to start growing exponentially.

This has been confirmed by many numerical simu-
lations, from cascade models of turbulence to three-
dimensional computations in planar or spherical ge-
ometries, which suggest the possiblity of parametric
resonances in such systems [8]. We will consider
this phenomenon below using a Parker dynamo (fre-
quently used in various areas of theory) as an exam-
ple. The essence of our approach is to introduce a
delay in the back influence of the magnetic field on
the α effect, which results in a parametric resonance
in the system (such a delay was first suggested to
account for variations in the cyclic character of solar
activity in [9, 10]). In Section 2, we consider model
equations and discuss the basis for this time delay.
Section 3 considers the emergence of a parametric
resonance in the system, the effect of the time lag on
the behavior of the phase portrait of the system, and
the variations in the phase shift between the poloidal
and toroidal magnetic fields; we also show how the
nonlinearity affects time changes in the shape of the
curve. Section 4 presents a discussion of the results.

2. DYNAMO EQUATIONS

We consider Parker’s dynamo model, which is fre-
quently used to describe the generation of magnetic
fields in galaxies, the solar dynamo, and the geody-
namo [11, 12]. We will use the following thin-shell
equations:

∂A

∂t
= αB + A′′,

∂B

∂t
= −DA′ + B′′, (1)

where A and B are the azimuthal component of the
vector potential of the magnetic field (B = rotA) and
the azimuthal component of the magnetic field B; α
is the hydrodynamic helicity, which depends on the
coordinate ϑ; and D is the dynamo number, which is
proportional to the product of the amplitudes of the
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Fig. 1. The magnetic field B averaged over time and
volume as a function of the time lag τ . The field B is nor-
malized so that B
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= 1. The quantity τ is measured in
units of the period of B at τ = 0.
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Fig. 2. Evolution of the volume-averaged magnetic en-
ergy for various time lags, τ = (a) 0, (b) 0.33, (c) 0.57, (d)
0.67, and (e) 0.89.

α̂ and ω̂ effects. A prime denotes a derivative with
respect to ϑ. At the boundaries of the region, θ = ±1
and the vacuum boundary conditions are satisfied,
B = 0 and A′ = 0. We seek a solution in the form

(A,B) = eγt(A(ϑ),B(ϑ)). (2)

The system (1) then reduces to the eigenvalue prob-
lem

γA = αB + A′′, γB = −DA′ + B′′, (3)

where γ is the growth rate. According to the general
representations, the pseudo-scalar quantity α(ϑ) is
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Fig. 3. Phase diagrams for various time lags, τ = (a)
0, (b) 0.33, and (c) 0.89. The arrow corresponds to the
direction of motion in phase space. The field values are
taken at the point ϑ = −0.9.

antisymmetric in ϑ about to the equator: α(−ϑ) =
−α(ϑ). In this case, the solutions can be divided
into two classes — quadrupolar (Q), A(−ϑ) = A(ϑ),
B(−ϑ) = −B(ϑ), and dipolar (D) A(−ϑ) = −A(ϑ),
B(−ϑ) = B(ϑ).

For D− < 0, the first mode (Dcr
− ∼ −8) is quadru-

polar and does not oscillate: �γ = 0. Typically, this
regime is considered for the galactic dynamo, where
the spatial dependence is associated with the disk-
depth direction. For D > 0, the first mode is dipolar
and oscillates (�γ �= 0), while the excitation thresh-
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Fig. 4. Evolution of Br (left) and B (right) for τ = 0, 0.1, 0.33, 0.57, 0.67, and 0.89 (from top to bottom).

old is considerably higher, Dcr
+ ∼ 200. We will further

be interested precisely in this regime.
Introducing a nonlinearity of the form

α(B) =
α0(ϑ)
1 + B2

(4)

makes it possible to obtain quasi-stationary solutions
without, on the whole, substantially changing the
form of the eigenvalues of the system (3); see [13] for
a comparison between the analytical and numerical
results.

Generally, the nonlinearity (4) is not the only one
possible. Among the important assumptions under-
lying (4) is that the response is instantaneous; this
requires a strict justification. Currently, more complex
models of α-effect quenching due to the mean mag-
netic field are available, in which the evolution of the α
effect obeys a differential equation [14] and the char-
acteristic relaxation time is close to the characteristic
period of the field (A, B). A substantial difference of
our model from (4) is the possibility of a phase shift
between α and B. Based on a somewhat different
dynamo equation describing the generation of the
solar magnetic field, Yoshimura [10] showed that the
delay of the Lorentz force relative to the magnetic
field can give rise to long-period variations. The above
studies mainly dealt with lags appreciably longer than
the principal oscillation period (22 years). Obviously,
introducing a long time lag necessarily results in the
emergence of long-period disturbance. On the other

hand, physical reasons for the presence of such a
long time lag are difficult to identify. We will show
below that even a modest time lag can substantially
modify the evolution pattern of the magnetic field
in the Parker dynamo; we will also demonstrate a
close relationship between this phenomenon and the
parametric resonance.

3. PARAMETRIC RESONANCE

Since α is a parameter of the system (1), we ex-
pect the emergence of a parametric resonance in the
system. We consider here how the time lag τ in the
dependence

α(ϑ, t, τ) =
α0(ϑ)

1 + B2(ϑ, t − τ)
. (5)

affects the generation process. The calculations for
α0 = sin(πϑ) and D = 300 are illustrated in Fig. 1.
The result is completely unexpected: although α
depends on B squared, the behavior of the mean
magnetic-field energy is not symmetric with respect
to τ = 0.5 (in units of the period of the process, T0 ≈
0.45). Thus, upon slightly reducing the magnetic-
field amplitude, at 0 < τ < τmin = 0.17, the magnetic
field begins to grow sharply, remaining time-periodic
(Fig. 2). At τ = τbr ≈ 0.5, the oscillation amplitude
decreases abruptly (Fig. 2c) to its values at τmin, and
the amplitude becomes modulated with a new oscil-
lation, whose period exceeds the oscillation period at
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Fig. 5. Butterfly diagrams B(t, θ) for τ = (a) 0, (b) 0.33, and (c) 0.67.

τ = 0 by a factor of eight for energy or a factor of four
for the field. The amplitude of this oscillation increases
with τ (Figs 2d, 2e). Note that the period of the new
oscillation begins varying at τ = 0.89 (Fig. 2e).

It is interesting to consider the phase diagrams in
the variables (Br,B), where Br = −A′

ϑ is the radial
(poloidal) component of the magnetic field. At τ = 0,
the behavior of the curve is regular, and the curve is
nearly elliptical (Fig. 3a). The major-to-minor axis
ratio is much greater than unity, which corresponds
to a small phase of the shift between the field compo-
nents, ϕBrB (= ϕBr − ϕB): the phase of the Br com-
ponents slightly lags ϕB . In the regions of the largest

departures, Br ≈ ±0.05, an area with β =
∂B

∂Br
→

±∞ appears; it is slightly elongated in the direction
Br = const. Let Br = sin t, B = sin(t + ϕBrB); then
β ∼ − sin(ϕBrB) tg t. At ϕBrB < 0, the maximum
value of β is within the region of the maximum Br

values, which can be seen in Fig. 3a.

Increasing τ to 0.1 changes the shapes of the Br

and B curves from sinusoidal to sawtoothed (Fig. 4);
this is first accompanied by a small increase in the
time lag of Br relative to B and then, with fur-
ther increase in τ , by phase equalization (ϕBrB ≈ 0).
Increasing τ to 0.33 results in manifestations of a
parametric resonance, which appears as a growth of
the magnetic-field amplitude and the emergence of a
small peaked extremum. In Fig. 3b, a region of large
|β| at small |Br| and two regions of small |β| at large
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|Br| can clearly be seen. All three regions exhibit a
linear B(Br) dependence.

The transition to τ > 0.5 is accompanied by a
drop of the field amplitude (Figs. 1, 2, 4). To first
approximation, the situation resembles the τ = 0.1
case (Figs. 1, 4). However, as is mentioned above, the
emergence of a new long-period component (Fig. 2c)
can already be distinguished. Note that such behavior
was achieved in [10] for a time lag exceeding the
principal period (see [3] for a survey of other mecha-
nisms). Further increases in τ result in the excitation
of two oscillations, which can clearly be seen in the
B(Br) graph (Fig. 3c). The amplitude of the phase-
shift oscillations ϕBrB < 0 increases with τ .

Differences in the behavior of Em at 0 < τ < 0.5
and 0.5 < τ < 1 can be attributed to the accumula-
tion of perturbations, which results in the develop-
ment of instability. This is supported by an analysis of
the solution for τ > 1, which reveals a pattern similar
to that in the region of 0.5 < τ < 1.

Up to now, we have not considered the depen-
dence of the solution on ϑ (from here on, we will

assume that ϑ varies from −π

2
to

π

2
). The dipolar

solution represents a wave traveling from the poles
to the equator, with a maximum field value at middle
latitudes at τ = 0 (Fig. 5). Increases in τ result in a
transition to a solution with a stripey structure, i.e., to
sharper polarity reversals in time and enhancements
of the magnetic field at the poles (Fig. 5b). Further
increases in τ give rise to a periodicity with a longer
period (Fig. 5c).

To confirm the parametric-resonance hypothe-
sis, we consider a solution in the form of waves,
B = b sin(ϑ − t), A = sin(ϑ − t + ϕ) and α =

1
1+B2(t−τ) . The equation for B does not explicitly
include τ ; for this reason, we consider only the
equation for A. Multiplying the equation for A by
A and integrating over the period yields δA(ϕ, τ) =
α0

∫ 2π
0

BA
1 + B2(t − τ)

dt. If |Π| > 1, where Π =

δA(ϕ,τ)
δA(ϕ,0) , then the solution (A,B) is unstable.

The expression for δA has the form

δA(ϕ, τ) = h1 + h2 tg ϕ, (6)

h1 ≈ 1 − 0.3 cos τ2, h2 ≈ 0.8 sin(2τ).

Then

Π = 1 +
0.8 sin(2τ)

1 − 0.3 cos τ2
tg ϕ, (7)

and, for ϕ → ±π

2
(which corresponds to ϕBrB ≈ 0)

and τ �= 0, the quantity |Π| increases (Fig. 6). Note
that the curves are antisymmetric about the straight
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line Π = 1, i.e., |Π(−t)| �= |Π(t)|; however, as the nu-
merical simulations show, the increase of ϕ with τ af-
fects the stability more strongly due to the breakdown
of the periodicity of the process. We will not consider
this symmetry violation below.

4. DISCUSSION

We have considered the dependence of the solution
on the time lag for only one fixed dynamo number,
as the α effect is quenched by the magnetic field.
Nevertheless, our analysis has revealed many new
effects, such as a modification of the shapes of the
evolution curves for the poloidal and toroidal mag-
netic fields, the emergence of zones of reduced and
increased fields, and an instantaneous response in
the α-effect quenching. The observed enhancement
of the field is due to the developing parametric reso-
nance, since α is a parameter in the equation for the
poloidal component of the magnetic field. This does
not contradict the simple analysis presented above.
Another interesting finding is the emergence of an
oscillation with a period much longer than the funda-
mental oscillation period, even for small time lags τ . It
would be interesting to compare the emergence of this
periodicity with observationally known solar-activity
periods that exceeding the basic 22-year period by
factors of a few. The difficulty is understanding why
the solution should be near τ ≈ 0.57. It is possible
that more complex models with τ found from the solu-
tion of the equations would demonstrate the presence
of an attractor in this region.
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