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1. INTRODUCTION

Energy transfer in the spectral space has been stud�
ied in different fields of physics. Hydrodynamics is
legally considered to be one of the first such regions
[Lesieur, 1990]. The possibility of energy transfer from
large to small scales forms the basis for the Kolmog�
orov theory, which postulates the existence of a self�
similar region in the wave space (the so�called inertial
interval) with a constant energy flux from one wave�
number to another and with absent dissipation and
external field work in this region (for more detail, see
[Frisch, 1995]). According to the model, for homoge�
neous and isotropic turbulence, energy is transferred
from slightly larger vortices to slightly smaller ones.
When more complex systems (e.g., thermal turbulence
or magnetic field problems) are considered, the con�
cept of inertial interval becomes incorrect in the strict
sense of the word since the work of forces is already
nonzero on almost all scales. Moreover, energy trans�
fer can reverse, and the so�called inverse energy cas�
cade from small scales to large ones can originate
[Kraichnan and Montgomery, 1980] as in the case of
two�dimensional turbulence, the properties of which
are close to those of rotating and magnetic turbulence
(for more detail, see the α�effect theory in [Krause and
Rädler, 1980]). It turns out that a simplified concept of
a serial energy transfer between scales is only a rough
approximation in many cases even for the problems of
convection with forcing on a certain scale: the consid�
ered interaction between Fourier modes indicates that
the structure of a wave triangle—a dependence of a
result on a spectral range—is very complex [Alexakis
et al., 2007]. Even if we assume that the energy is
locally transferred over the spectrum from a mode with
wavenumber Q = |q| to a mode with K = |k|, when P ~
K, the amplitude of the third triad harmonic P (p + q
+ k = 0) can substantially differ from P and Q. If P ~ Q

~ K, the triad coupling is said to be local. If P � Q (or
P � Q), it is said that energy is locally transferred due
to nonlocal interaction. The calculations indicate that
all models, reproducing a spectrum with the exponent
close to that predicted by Kolmogorov (–5/3), gener�
ally simultaneously interact with a forcing scale, which
corresponds to nonlocal coupling according to the
classification proposed above. This is equivalent to
deformation of small vortices by large ones.

When rotation is introduced, this leads to a sub�
stantial reconstruction of fluxes in the physical and
wave spaces. The Coriolis force itself does not deliver
work; nevertheless, the amplitude of large�scale fluxes
can increase because the conditions are formed for an
inverse energy cascade, which is observed in direct cal�
culations [Hossain, 1994] and was predicted theoreti�
cally [McComb, 1992]. As a result, the exponent of
the kinetic energy spectrum also increases from –5/3
to –2 [Zhou, 1995; Constantin, 2002]. This change is
related to blocking of energy transfer over the spec�
trum [Zhou, 1995].

The conditions for the appearance of cyclonic con�
vection with high vertical velocities originate when we
pass to the problem with thermal convection, when
the equation for temperature and the buoyancy force
are added. In the physical space, the problem has
already been sufficiently studied in the works devoted
to the geodynamo. Rapid rotation results in the
appearance of equilibrium between the Coriolis force
and pressure gradient (the geostrophic balance) [Ped�
losky, 1987]: lz × V ~ ∇p, from which it follows that the
field gradients along the axis of rotation (z) are small:

 ~ 0.
1
 Cyclones (anticyclones), extended along the

1 Note that we mean the balance of the Coriolis force potential
component.
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axis of rotation, originate. If we consider the Earth’s
liquid core and decrease the amplitude of heat sources
to the level at the convection origination onset, the
diameter (dc) of such cyclones will be five orders of
magnitude as small as the cyclone height. A cluster of
such cyclones actually exists in the wave space because
convection in the Earth’s core is turbulent (the Rey�
nolds number reaches Re ~ 109); however, the geo�
strophic balance exists for at least the first three–four
orders with respect to k according to the estimated
orders of magnitude. This is substantially larger than
the range of the geomagnetic field spectrum and
should be taken into account when the dynamo mod�
els are constructed.

The appearance of the Coriolis force is also of
importance for the dynamics of energy transfer in the
wave space. Previously, the nonlinear term, which was
of the same order of magnitude as the pressure gradi�
ent, easily transferred energy over the spectrum (e.g.,
due to the vortical part of the nonlinear term). When
the Coriolis force was found out, the following situa�
tion became possible: pressure compensates the
potential component of the Coriolis force. The vorti�
cal component of the Coriolis force blocks energy
transferred by the nonlinear term. As a result, the
spectrum becomes steeper. Such a situation is
observed on small scales (l � dc). On large scales (l �
dc), the system can be in the state of statistical equilib�
rium: dissipation is almost absent, and the energy
transfer between the scales is negligible.

Below, we will consider the energy fluxes and the
triad structure in the wave space for the Navier–Stokes
equation for the regimes typical of models of convec�
tion in the Earth’s liquid core, compare these charac�
teristics with those in the regimes without rotation,
and consider the degree of quantitative correspon�
dence with several phenomenological models of tur�
bulence mentioned above.

2. CONVECTION EQUATIONS

We now consider thermal convection of incom�
pressible fluid ∇ ⋅ V = 0 in a rectangular box rotating
about the vertical axis z at angular velocity Ω. Having
introduced the κ/L, L2/κ, and ρκ2/L2 units for veloc�
ity V, time t, and pressure P, respectively (where L is
the unit of length, κ is the coefficient of molecular
thermal conductivity, and ρ is the substance density),
we write the set of dynamo equations in Cartesian
coordinates (x, y, z) in the form:

(1)

EPr
1– ∂V

∂t
����� V– ∇ V×( )×

=  ∇P– lz V× RaTlz+– E∆V,+

∂T
∂t
����� V ∇⋅( ) T T0+( )+ ∆T.=

The dimensionless numbers of Prandtl, Ekman, Ray�

leigh, and Roberts are introduced as Pr = , E =

, and Ra = , where ν is the coefficient

of kinematic viscosity, α is the coefficient of volumet�
ric expansion, g0 is the free fall acceleration, δT is the
unit of temperature disturbance (T) relative to the
“diffusion” temperature distribution T0 = 1 – z, and η
is the coefficient of magnetic diffusion. We introduce
the Rossby number as Ro = EPr–1. The problem (1)
was solved in a rectangular box with the periodic
boundary conditions along coordinates x and y. For
the z = 0 and 1 boundaries, temperature disturbances
are zero, which is equivalent to the specification of

temperature at the  = T + T0 = 1 and 0 boundaries
(heating from below), if the selected T0 profile is taken
into account. For the velocity field, we accept the con�
dition of impenetrability and equality to zero of the
tangential component gradients at z = 0 and 1: Vz =

 =  = 0. Such a statement of the boundary

conditions guarantees that the tangential components
of the viscous stress tensor and the values of hydrody�
namic helicity are zero. To solve (1), we used the pseu�
dospectral code (for more detail, see [Orszag, 1971;
Meneguzzi and Pouquet, 1989; Cattaneo et al.,
2003]), adapted for parallel processes using MPI
[Reshetnyak, 2007]. The calculations were performed
using the N3 grid (N = 64).

3. FLUXES IN k SPACE

The concept of fluxes in the wave space can be con�
sidered in more detail in [Frisch, 1995; Reshetnyak,
2008] and references therein. To describe exchange
interactions in the Fourier space, it is convenient to
divide the wave space into such shells that ki < k <
ki + 1/ki = γ (it is usually accepted that γ = 2). We will
subsequently be interested in the energy exchange
between such shells (cascade processes). We introduce
the field f expansion into the HF and LF components:
f(r) = f <(r) + f >(r), where

(2)

respectively. For the periodic fields f and g, we have
(for more detail, see [Frisch, 1995]):

(3)

ν

κ
��

ν

2ΩL2
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where

(4)

means averaging of field f over volume V. Multiplying
the Navier–Stoles equation into V<, we have the
expression for a change in the kinetic energy in a
sphere with radius K, average over a volume:

(5)

where the kinetic energy integral flux from the k > K
region into the k ≤ K region is specified in the form

(6)

and summation is taken with respect to the repeated
indices i = 1, …, 3. It is convenient to introduce the
kinetic energy local flux TK:

(7)

In such a case, we have the following expression for the
Navier–Stokes equation:

(8)

where E(k) =  is a change in the kinetic

energy at wavenumber k, F(k) =  is the

work of the buoyancy force, and D(k) = –Prk2E(k) is
dissipation. Expression (8) describes the kinetic
energy total flux via wavenumber k.

To study the detailed structure of the triad mecha�
nism, we can determine the form of the energy equa�
tion describing energy transfer from shells Q and P to
shell K:

(9)

where E(K) and D(K) have the same form as in (8),
T3 = 〈Vi(K) ⋅ (Vj(P) ⋅ ∇j)Vi(Q)〉, and A(K) =

.

It is also useful to introduce the T2(K, Q) = (K,

Q, P)dP function. Generally speaking, the latter
should be explained. We can demonstrate that T2

means the energy flux from harmonic Q to harmonic K
(see references in [Alexakis et al., 2007]). An analysis
of T2 makes it possible to estimate whether the energy

f r( )〈 〉 V 1– f r( ) r3d

V
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〈 〉
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transfer is local or not rather than the locality of the
interaction itself. Studying T3 makes it possible to
completely restore the wave triangle structure and to
elucidate whether the interaction itself is local or not.
Note also the useful properties of function T2: in the
general case for arbitrary periodic (or random homo�
geneous) nondivergent fields u(Q), w(K), and V, we

have [Alexakis et al., 2005] (Q, K) = (K, Q),

where (Q, K) = 〈ui(K) ⋅ (Vj ⋅ ∇j)wi(Q)〉, and Twu(Q,
K) = 〈wi(Q) ⋅ (Vj ⋅ ∇j)ui(K)〉, which corresponds to the
equality between the energies received by shell K from
shell Q and transferred from shell Q to shell K. In the
following section, we will consider the properties of
fluxes TK, T2, and T3, using set (1) as an example, and
will elucidate how these fluxes change when rotation is
introduced.

4. FIELD SPECTRA AND ENERGY TRANSFER 
DIRECTION

We now briefly consider the results of [Reshetnyak,
2008], which is necessary for us to understand the fol�
lowing material, and will subsequently consider the
problem of locality of the triad interaction and energy
transfer.

We consider three convection regimes.
NR: the regime without convection (the Coriolis

force is zero); Ra = 9 × 105, Pr = 1, E = 1, and Re ~
700.

R1: the regime with rotation; Ra = 4 × 102, Pr = 1,
E = 2 × 10–5, and Re ~ 200.

R2: the regime with rotation; Ra = 1 × 103, Pr = 1,
E = 2 × 10–5, and Re ~ 104.

These regimes correspond to convection close to
Kolmogorov convection (NR) and geostrophic con�
vection (R1 and R2). Subsequently, we will omit the
description of the flux morphology considered in
[Reshetnyak, 2007, 2008] and will study the kinetic
energy fluxes in the wave space.

The NR regime corresponds to turbulent convec�
tion without rotation. The spectral properties of con�
vection are close to the Kolmogorov dependence
~k⎯5/3 (Fig. 1), and the amplitude of the kinetic energy
chaotic oscillations accounts for ~15% of the average
energy level.

Thermal convection with rotation is characterized
by the appearance of many vertically rotating columns
(cyclones–anticyclones). The number of these col�
umns depends on the Ekman number as kc ~ E–1/3

[Chandrasekhar, 1961; Busse, 1970; Jones and Rob�
erts, 2000]. For the Earth’s liquid core, E ~ 10–15,
which douse not evidently make it possible to perform
calculations at realistic values of the parameter. One
usually manages to reach regimes with E =10–4–10–6

[Jones, 2000]. The aim of numerical experiments is to

T2
uw T2

wu–

T2
uw
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obtain an asymptotic regime and to perform the corre�
sponding interpolation to the Earth’s parameters. A
linear analysis also indicates that the critical Rayleigh
number, at which convection begins, depends on the
Ekman number as Racr ~ E–1/3. An increase in Racr is
related to the appearance of cyclonic convection,
resulting in increased dissipation.

The R1 regime corresponds to the geostrophic
convection state near the generation threshold, which
is characterized by the regular spatial structure of
cyclones. An increase in Ra (regime R2) results in a
disturbance of cyclone ordering, appearance of small�
scale fluxes in the z direction, and deviation from the
geostrophic state. The spectra of convection with rota�
tion differ from the regime without rotation (Fig. 1).
Regime R1 is close to the threshold regime. A peak
(kc ~ 8) corresponding to cyclonic flows is clearly
defined in the integral spectrum (the upper curve).
With increasing Ra (regime R2), a spectrum notch is
filled, and the integral spectrum becomes similar to
the spectrum without rotation.

The observed similarity in the behavior of the R2
and NR spectra does not yet indicates that the physical
processes are similar: it is known that the kinetic
energy spectrum ~k–5/3 is also observed in two�dimen�
sional turbulence [Kraichnan and Montgomery,
1980], but the energy is transferred from small scales to
large ones rather than in the opposite direction. The
presented estimates of the terms for R2 [Reshetnyak,
2008] indicate that the geostrophic balance is satisfied.

We now consider the behavior of TK(k). The NR
regime demonstrates the known pattern of a Kolmog�
orov direct kinetic energy cascade (Fig. 2). For large

scales,  0: these scales are energy sources. When we
go to the IR spectrum, the flux sign reverses: the
energy is consumed. For two�dimensional turbulence,

TM
<

a twin pattern of the flux is observed [Kraichnan and
Montgomery, 1980]. In this case an inverse cascade is
observed instead of a direct cascade.

Rotation substantially changes the behavior of
energy fluxes. The energy is carried by the wavenum�
ber kc. For k > kc, we also observe a direct energy cas�

cade  > 0. A shift of the  maximum to the right
relative to the spectral maximum increases with
increasing Re. For k < kc, the pattern is substantially

more complex: an inverse energy cascade (  > 0) is
observed for large wavenumbers.

5. ENERGY FLUX LOCALITY

We now consider the structure of triad interactions.
Figure 3 presents the diagram of the T2 fluxes antisym�
metric about the K = Q diagonal for the regimes con�
sidered above. The pattern generally resembles the
results with forcing (see [Alexakis et al., 2007]: har�
monics with K > Q take the energy from harmonics
with K < Q (direct energy cascade). The flux maximum
falls on harmonics with K ~ Q close to the diagonal;
i.e., the energy being locally transferred. Note that in
some regions (e.g., Q = 5, K = 20) a nonlocal inverse
cascade is also observed (see the discussion in the
Introduction); however, the integral pattern is close to
the idealized Kolmogorov scenario. It is convenient to
represent the diagram shown in Fig. 3 in the form of an
integral over Q and K as a K–Q function (see Fig. 4).
Figure 4 distinctly demonstrates that a direct cascade
and local interaction and energy transfer are present.

Rotation changes the behavior of T2 for k < kc,
remaining this temperature almost unchanged for the
HF region (k > kc). We now consider the appeared
changes in more detail. The absolute maximums
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(minimums) are located in the region close to kc; i.e.,
the energy being transferred from a leading mode into
the region with large k. On the other hand, the energy
flux sharply decreases for k < kc, which corresponds to
an approach of the system to the statistical equilibrium
that is also observed in Fig. 2. A finer structure is
observed for small k in the enlarged image (see Fig. 3,
panel 3): region A with a direct energy cascade but with
an equiprobable energy transfer from small Q ~ K and
from relatively large Q ~ 4 K. Region B with an inverse
energy cascade (and a small energy flux amplitude that
accounts for about 1/10 of the absolute maximum as in
region A) has an extended strip shape from Q ~ K to
Q ~ 10 K. This corresponds to the appearance of a
small negative maximum for K > Q in Fig. 4.2 

An increase in Ra (regime R2) results in a shift of
the region with an inverse energy cascade toward small
Q and K > Q. As before, we can speak about the exist�
ence of the state, which is close to a homogeneous dis�
tribution for k < kc. This regime is also characterized
by a longer interval in the k > kc region with a local
energy transfer and direct cascade. The relative contri�

2 We do not comment the behavior of the curve for K < Q (regions
C and D) since this plot is antisymmetric.

bution of the region with inverse cascade decreases
(see Fig. 4, plot 3). At the same time, this contribution
shifts to the large�scale region k � kc, which can be of
interest for the geodynamo problems, when the dis�
tance between kc ~ 105 and the region of magnetic field
generation is at least several orders of magnitude (at
present�day estimates of the magnetic Reynolds num�
ber Rm ~ 102–103, the region of magnetic field genera�
tion lies in the k ~ 1–103 range).

6. INTERACTION LOCALITY

We consider in more detail the properties of the T3

function for the regimes considered above. For reasons
of symmetry, we anticipate that T3(K, P, Q) = T3(K, Q,
P), which was used to construct a discrete analog
for an operator. The case without rotation (Fig. 5,
panels 1, 2) demonstrates an extremely interesting
result: the contribution of two sources (waves with P �
K, Q � P and Q � K, P � Q) to the energy flux, which
falls on harmonic K, is maximal. In other words, a
wave triangle is oblique and has a small angle between
equal sides K, P or K, Q. Taking into account the fact
that the energy is transferred to K from the nearest
smallest wavenumber according to Fig. 4, we can
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arrive at the conclusion that the third vector with a
small amplitude is a catalyst. When participating in the
exchange process, this HF harmonic does not transfer
the energy to wave K. The result is beyond the classical
Kolmogorov theory, according to which a wave trian�
gle should be oblique; i.e., not only the energy transfer
being local but also the triad interaction shows this
property. This is caused by two factors. First, taking
into account the data obtained by Alexakis et al.
[2007], we relate this to an insufficient length of the
considered spectrum since we have only several verti�
cal plumes for the resolution used in the NR regime.
On the other hand, we relate this to the existence of
plumes themselves and, consequently, to the system
anisotropy. In this connection, it is known that the flux
anisotropy on small scales is substantial even at sub�
stantially larger Reynolds numbers in the problems
with forcing [Zhou and Yeung, 1996]. Our simulation
indicates that the energy fluxes on small scales highly
correlate with the buoyancy force on a large scale. This
is demonstrated by the behavior of the function r(K) =

max(P/Q, Q/P)dPdQ/ (P, Q > 0), see

Fig. 6. The angle α(K) = /  (f = (P2

+ Q2 – K2)/2PQ) between the p and q vectors is about
100° for almost all K; i.e., the modes that participate in
the interaction being close to the orthogonal modes in
the wave space.

We now consider the case with rotation. The triad
structure for small Ra strongly differs from this struc�
ture in the regime without rotation. The same har�
monic interacts with the entire wave packet: the dia�
gram is cruciform. The latter is possible due to an
increase in the angle between the p and q vectors. Note
that P ~ Q for small K and P (see Fig. 6). An inverse
energy cascade for small K is clearly defined in Fig. 5:
the harmonic with K = 7 obtains the energy from large
wavenumbers and transfers this energy to the HF spec�
tral region. As K increases, we approach again the state
when P ~ Q and α ~ 100°. However, in contrast to the
case without rotation, the energy of wave K is trans�
ferred from waves with P ~ Q � 0.7 K. When Ra
increases, the system starts operating in the intermedi�
ate regime between the regimes considered above.

7. DISCUSSION AND CONCLUSIONS

We now consider the main results of the work.
Rotation substantially changes the morphology and
spectral composition of the fluxes in the physical
space. The position of the system the in the wave space
strongly differs from such a position of a leading mode
kc even for relatively small amplitudes of thermal
sources. For modes with k < kc, an insignificant inverse
cascade is observed, and the interaction becomes non�
local. For modes with k > kc, an energy cascade
becomes direct; however, a nonlocal energy transfer is
possible from small k ~ kc. The aforesaid can be the

T3∫ T3 Pd Qd∫
fT3 Pd Qd∫ T3 Pd Qd∫

motivation for the development of low�mode models
of turbulence with an energy source at kc.

The approaches considered above demonstrate a
diverse interaction between individual modes in a sill
rather simple (from the standpoint of a complete geo�
dynamo problem) system without magnetic field.
Such an analysis will make it possible to tune the
developed models with turbulent coefficients of trans�
fer so that the flux values for scales larger than the aver�
aging scale (da) would coincide with the values consid�
ered above during the direct numerical simulation.
Only such a step�by�step comparison can guarantee
the accurateness of the introduced semiempirical
model of turbulence. It is nontrivial to represent an
inverse energy cascade in the case when dc < da.
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Fig. 6. Variations in the P/Q and Q/P wavenumber ratio maximums (panel a) and the angle between the p and q vectors (panel b),
entering into the triad interaction, vs. the wavenumber (K) of the resultant harmonic.
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