
 

701

 

ISSN 1069-3513, Izvestiya, Physics of the Solid Earth, 2009, Vol. 45, No. 8, pp. 701–708. © Pleiades Publishing, Ltd., 2009.
Original Russian Text © M.Yu. Reshetnyak, 2009, published in Fizika Zemli, 2009, No. 8, pp. 83–90.

 

INTRODUCTION

According to the classical Kolmogorov model for suf-
ficiently high amplitude of energy sources in liquids,
gases, and plasma, the energy cascade (the Richardson
cascade) appears. Depending on the system dimensional-
ity kinetic energy is transferred both from the large scales
to the smaller scales (the direct cascade of energy for 3D
turbulence) and in the opposite direction (the inverse cas-
cade of energy for 2D turbulence). This model obtained
confirmation both in numerous numerical experiments
[Tabeling, 2002] and in the theory of renormalization
groups [Kraichnan and Montgomery, 1980].

In the regime of pure convection, for example, in the
problem with the induced force, the energy transfer occurs
due to the nonlinear term in the Navier–Stokes equations.
Since the nonlinear term is quadratic in the field of veloc-
ity 

 

V

 

, it can be called the triadic interaction [Pedlosky,
1987]. In the general case, the wave with the wave vector
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 = 
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|

 

 is formed due to the interaction of the pair of
waves 
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q

 

 so that 
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then it can be called the local (nonlocal) energy transfer.
The locality of interaction results in the local energy trans-
fer while, generally speaking, the converse is false [Alex-
akis et al., 2007]. Despite the fact that harmonics with
greatly differing wave vectors can participate in nonlinear
interaction, for nonrotating turbulence the contribution of
harmonics with the close wave numbers predominates
(~80%, for the Reynolds numbers Re ~800), and energy is
transferred locally through the spectrum (the contribution
of other harmonics is weakly correlated). The remaining
20% that correspond to the nonlocal interaction are suffi-

cient for the appearance of the long characteristic times
(considerably longer than the turn-round time of vortex) in
the small scales.

In passing from the problem of convection with the
induced force to the task of heat convection with the
Prandtl numbers Pr ~1, the picture of energy transfer, on
the whole, does not change, although a certain decrease of
the nonlocal energy transfer from the scale of the induced
force to the small scales is possible. The picture radically
changes, when the system is set into rotation. In this case,
the Rossby waves appear in the liquid medium [Pedlosky,
1987], that have the small scale in the plane, which is per-
pendicular to the axis of rotation, and have the large scale
along the axis of rotation. In the zero approximation the
so-called geostrophic balance appears, which is reduced to
the balance of forces of pressure and the Coriolis force. In
the next order in the expansion in the Ekman number the
Coriolis force demonstrates an anticorrelation with the
nonlinear term and blocks the energy transfer through the
spectrum. Formally, this mechanism can be understood as
follows: the nonlinear term in the Navier–Stokes equa-
tions can be written in the form 
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×
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∇
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. However, the
introduction of rotation leads to the appearance of the
hydrodynamic helicity: 

 

χ

 

 = 

 

V

 

 

 

·

 

 (

 

∇
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V

 

)

 

 (the mean with
respect to volume 

 

〈χ〉

 

 without rotation is equal to zero). It
is obvious that by changing the angle between 

 

V

 

 and the
vorticity of the field of velocity 

 

ω

 

 

 

= 

 

∇

 

 

 

×

 

 

 

V

 

, it is possible to
attain an increase in one value, with a decrease in another
one. The analogy with the magnetic field is of interest: it is
known that the large-scale magnetic field also attenuates
the cascade of kinetic energy, allowing the energy flow
form the large scales to the small scales directly (the non-
local cascade) [Alexakis et al., 2007]. In both cases the
formation of 2D flow occurs due to the magnetic field, or
the forces of rotation [Batchelor, 1953].
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The noted formation of 2D flows leads to the
appearance of inverse cascades of energy in the prob-
lems of heat convection and the dynamo with rotation
[Reshetnyak, 2008a]. Since in the large scales the
extraction of energy is less efficient than in the small
scales (where dissipation occurs), in the real quasi-geo-
strophic systems the amplitude of the inverse flow of
energy is not great. The direct 3D calculations give evi-
dence of the appearance of regimes, which are close to
the statistical equilibrium. The latter implies not only
the statistical stationarity of random fields, but also the
absence of the fluxes of these values in the wave space
(i.e., there is no energy exchange between the scales)
[Rose and Sulem, 1978]. For example it can be noted
that the Kolmogorov theory is based on the constancy
of the kinetic energy flux within the inertia interval.

Further I will return to the results of the work [Reshet-
nyak, 2008b] and will consider the questions of triadic
interaction and locality of the energy transfer in the wave
space for the convection in the rotating rectangular box
with the incompressible fluid heated from below.

THE CONVECTION EQUATIONS

Consider the heat convection of incompressible
fluid 

 

∇

 

 

 

·

 

 

 

V

 

 = 0 in the rectangular box rotating with an
angular velocity 

 

Ω

 

 relative to the vertical axis 

 

z

 

. After
introducing the following units of measurement for
velocity 

 

V

 

, time 

 

t

 

, and pressure 

 

ê

 

: 
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2
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,
where L is the unit of length, 

 

κ

 

 is the coefficient of
molecular thermal conductivity, and 

 

ρ

 

 is the substance
density, let us write the system of equations of the
dynamo in the Cartesian system of coordinates (

 

x

 

, 

 

y

 

, 

 

z

 

)
in the form:

 

(1)

 

The dimensionless Prandtl, Ekman, Rayleigh, and Rob-

erts numbers are introduced as: Pr

 

 =  

 

E

 

 =  

 

and

Ra

 

 =

 

  where 

 

ν

 

 is the kinematic viscosity coef-

ficient, 

 

α

 

 is the coefficient of volumetric expansion, 

 

g

 

0

 

is the gravity acceleration, 

 

δ

 

í

 

 is the unit of disturbance
of temperature 

 

í

 

 relative to the “diffusion” temperature
distribution of 

 

í

 

0

 

 

 

= 1 – 

 

z

 

. The Rossby number is intro-
duced as Ro

 

 = 

 

EPr

 

–1

 

. Problem (1) was solved in the
rectangular box with the periodic boundary conditions
for coordinates 

 

x

 

 and 

 

y

 

. For the boundaries 

 

z

 

 = 0, 1 the
disturbances of temperature 

 

í

 

 were equal to zero,
which taking into account the selected profile of 

 

í

 

0

 

, is
equivalent to the assignment of temperatures on the

E Pr 1– V∂
t∂

------- V ∇ V×( )×–

=  P 1z V RaT1z E∆V+ +×–∇–( ),

T∂
t∂

------ V ∇⋅( ) T T0+( )+ ∆T .=

ν
κ
---,

ν
2ΩL2
--------------,

αg0δTL
2Ωκ

-------------------,

boundaries:  = T +  í0 = 1, 0 (heating from below).
For the velocity field, the condition of nonpenetration
and equality to zero of the gradients of tangential com-

ponents at z = 0, 1: Vz =  =  = 0 are assumed to

be valid. The formulation of boundary conditions in
such a way guarantees the equality to zero of the tan-
gential components of the tensor of viscous stresses,
and also the zero values of hydrodynamic helicity. For
the solution of (1) the pseudo-spectral code was used
(see details in [Orszag, 1971; Meneguzzi and Pouquet,
1989; Cattaneo et al., 2003]), adapted for parallel pro-
cessors with MPI utilization [Reshetnyak, 2007]. The
calculations were conducted on the grid of N3, N = 64.

FLUXES IN k-SPACE

For describing the exchange interactions in the Fou-
rier-space it is convenient to divide the wave space into
shells, such, that ki < k < ki + 1, ki + 1/ki = γ, while it is usu-
ally accepted that γ = 2. Further, consider in the energy
exchange between such shells (the cascade processes).
Let us introduce the expansion of field f in the high and
low-frequency components: f(r) = f<(r) + f>(r), where

(2)

accordingly. For the periodic fields f and g the follow-
ing conditions are true (see details in [Frisch, 1995]):

(3)

where

(4)

means the averaging of field f over volume V. Multiply-
ing the Navier–Stokes equations by V<, one can obtain
an expression for the average over the volume of a
change of the kinetic energy in the sphere of radius ä:

(5)

where the integral flux of kinetic energy from region
k > ä into region k ≤ K is assigned in the form

(6)

and summation is conducted over the repetitive indices
i = 1…, 3. It is convenient to introduce the local flux of
kinetic energy íä:

(7)
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Then, for the Navier–Stokes equation we have:

(8)

where E(k) =  is a change in the kinetic

energy for the wave number k, F(k) = 

is the work of the force of Archimedes, and D(k) =
−Prk2E(k) is the dissipation. Expression (8) describes
the total flux of the kinetic energy through the wave
number k.

For studying the detailed structure of the triadic
mechanism it is possible to ask a question about the
form of the energy equation, which describes the
energy transfer from shell Q to shell ä. Generally
speaking, this formulation of the problem is nontrivial,
since we always deal with three waves [Verma, 2004].
It is possible to show that such problem formulation is
valid (see references in [Alexakis et al., 2007]):

(9)

where Ö(ä) and D(ä) take the same form as in (8), and

Tuu = 〈Vi(K) · (Vj · ∇j)Vi(Q)〉, Ä(ä) = 〈T(K)Vz(K)〉.

Here the flux of kinetic energy Tuu from shell Q to shell

E K( )∂
t∂

---------------- TK k( ) F k( ) D k( ),+ +=

1
2
---

k∂
∂

Vk
2〈 〉

Ra Pr
E

-------------
k∂

∂
TVz

<〈 〉

E K( )∂
t∂

---------------- Tuu A K( ) D K( ),+ +=

Ra Pr
E

-------------

ä depends on two wave numbers ä and Q, respectively,
that requires taking into account the fast Fourier trans-
form utilized for multiplication of the nonlinear terms
of the N5ln(N) operations. The analysis of Tuu enables
one to estimate whether the energy transfer is local or
not, but not the locality of the interaction itself (the lat-
ter would require N6ln(N) operations). In the general
case, for the arbitrary periodic (or random uniform)
nondivergent fields u(Q), w(K) and V we have [Alex-
akis et al., 2005]: Tuw(Q, K) = –Twu(K, Q), where
Tuw(Q, K) = 〈ui(K) · (Vj · ∇j)wi(Q)〉, and Twu(K, Q) =
〈wi(Q) · (Vj · ∇j)ui(K)〉, which corresponds to the equal-
ity of the energy obtained by shell ä from shell Q to the
energy returned by shell Q to shell ä. In the next para-
graph I will examine the properties of the fluxes íä and
Tuu by using the example of system (1) and their
changes during the introduction of rotation.

THE CASCADE PROCESSES

Let us further briefly consider the results of the work
[Reshetnyak, 2008b], that is necessary for understand-
ing the subsequent material, and will proceed to a ques-
tion about the locality of triadic interaction.

Consider three regimes of convection (Fig. 1):

NR: Regime without rotation (the Coriolis force
vanishes), Ra = 9 × 105, Pr = 1, E = 1, and Re ~ 700.
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Fig 1. Sections of the temperature field í and the vertical component of velocity Vz without rotation (regime NR). The upper row
is for ı = 4.3, the lower row is for z = 0.8. The field ranges are (0, 1), (–257, 506) and (0.03, 0.86), (–254, 572). 
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R1: Regime with rotation, Ra = 4 × 102, Pr = 1, E =
2 × 10–5, and Re ~ 200.

R2: Regime with rotation, Ra = 1 × 103, Pr = 1, E =
2 × 10–5, and Re ~ 104.

The first regime, presented in Fig. 1, corresponds to
turbulent convection without rotation.1 The spectral
properties of convection are close to the Kolmogorov
dependence ~k–5/3 (Fig. 2), and the amplitude of the
chaotic fluctuations of kinetic energy amounts to ~15%
of its mean level.

Heat convection with rotation is characterized by
the appearance of a large number of vertical rotating
columns (cyclones–anticyclones). Their number
depends on the Ekman number as kc ~Ö–5/3 [Chan-
drasekhar, 1961; Busse, 1970; Jones and Roberts,
2000]. For the liquid Earth core Ö ~ 10–15, that obvi-
ously makes it impossible to conduct calculations with
the realistic values of the parameters. Usually, it is pos-
sible to attain regimes with Ö = 10–4–10–6 [Jones, 2000].
The purpose of numerical experiments is to obtain the
asymptotic regime and to conduct the corresponding
extrapolation to the Earth’s parameters. Also, from lin-
ear analysis it is known that the critical Rayleigh num-
ber, with which convection begins, depends on the
Ekman number as Racr ~ Ö–1/3. An increase in Racr is
connected with the appearance of cyclonic convection,
which leads to increased dissipation.

Regime R1 corresponds to the geostrophic state of
convection near the generation threshold, characterized
by the regular spatial structure of cyclones (Fig. 3). An
increase in Ra (regime R2) results in the disturbance of
the ordering of cyclones, to the appearance of small-

1 Since on the generating threshold the horizontal size of the con-
vective cell is larger than the vertical size, the box elongated in
the horizontal direction is usually used. In the calculations the
following sizes were utilized: Lx = Ly = 5Lz � 5L. 

scale flows in the direction z, and to the deviation from
geostrophism. The nonlinear term becomes closer by
the amplitude to the Coriolis force and to the pressure
gradient and the time behavior becomes more chaotic.
In both cases with rotation the appearance of hydrody-
namic helicity χ(z) = 〈V · rotV〉xy ~ z – 0.5 is observed
(the averaging is carried out in the (x, y) plane) [Resh-
etnyak, 2007]. For the NR regime χ vanishes.

The spectra of convection with rotation differ from
the regime without rotation. Regime R1 is close to the
threshold. On the integral spectrum (the upper figure)
the peak of kc ~ 8 is clearly seen, which corresponds to
cyclonic flows. It should be noted that for regime R1 the

spectra of kinetic energy EK(k⊥) =  Ë EK(k||) =

 considerably differ (  =  + 

k|| ≡ kz). For k < kc EK(k⊥) is close to the white spectrum,
and EK(k||) ~ k–3.

With an increase in Ra (regime R2), the spectrum
notch begins to be filled and the integral spectrum
becomes similar to the spectrum without rotation. The fill-
ing of the spectrum for the vertical part of the spectrum
occurs more smoothly and it rapidly approaches the Kol-
mogorov dependence. The filling of the spectrum is also
observed in problems with spherical geometry (see [Resh-
etnyak, 2006]) and in the cascade models of turbulence
[Reshetnyak and Steffen, 2006].

The observed similarity in the behavior of spectra R2
and NR is not yet indicative of the similarity of the physi-
cal processes: it is known that in 2D turbulence [Kraieh-
nan and Montgomery, 1980] the spectrum of kinetic
energy with ~k–5/3 is also observed, but the energy transfer
proceeds not from the large scales to the smaller ones, but
vice versa. The estimates of the terms for the R2 regime
presented in [Reshetnyak, 2008] imply the fulfillment of
the geostrophic balance.

Let us examine the behavior of íä(k). Regime NR
demonstrates the well known picture of the Kolmogorov
direct cascade of kinetic energy (Fig. 4). For the large

scales  < 0 these scales are the energy sources. In pass-
ing to the infrared spectrum, the sign of flux changes and
becomes positive: energy is consumed. For 2D turbulence,
the reflection symmetric picture for the flux is observed
[Kraiehnan and Montgomery, 1980]. In this case, instead
of the direct cascade of energy the reverse cascade is
observed.

Rotation significantly changes the behavior of energy
fluxes. The energy-carrying wave number is kc. For k > kc

there is a direct cascade of energy  > 0. The larger the

Re, the greater the maximum of  is displaced to the
right relative to the spectrum maximum. The picture is sig-
nificantly more complex for k < kc: for the small wave

EK kz( ) kzd∫
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Fig. 2. Kinetic energy spectra for regimes (1) NR, (2) R1,
and (3) R2. The straight line corresponds to the Kolmog-
orov spectrum with ~k–5/3.
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numbers the reverse cascade of energy  > 0 is
observed. At the same time, in the larger part of the
domain of wave numbers 0 < k < kc, the energy cascade is

direct as before,  < 0.

THE LOCALITY OF ENERGY FLUX

Let us proceed to a question concerning the structure of
triadic interactions. The diagram of Tuu fluxes for the
regimes examined above is presented in Fig. 5. For the NR
regime, the symmetry of the plot relative to diagonal ä =
Q is clearly outlined. Analogous properties of Tuu are
observed for the problem of 3D convection with free
decaying [Debliquy et al., 2005] and with random induced
force [Alexakis et al., 2007]. On the whole, the harmonics

TK
<

TK
<

with ä > Q consume the energy in harmonics with ä < Q
(the direct cascade of energy). The maximum of energy
flux falls at the harmonics close to the diagonal harmonics
with ä ~ Q, i.e., the local energy transfer is present. Atten-
tion should be drawn to the existence of the domains (for
example, Q = 5, ä = 20), for which the nonlocal reverse
cascade of energy is also observed (see discussion in the
introduction). However, as a whole, the picture is close to
the idealized Kolmogorov scenario. It is convenient to rep-
resent the diagram, given in Fig. 5 in the form of an inte-
gral over Q and ä, as a function of ä vs. Q (Fig. 6). The
plot distinctly demonstrates the presence of the direct cas-
cade, and also the local interaction and the local energy
transfer.

Rotation changes the behavior of Tuu for k < kc, leaving
it practically without change for the high-frequency range
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Fig. 3. Sections of the temperature field í and the vertical component of velocity Vz taking the rotation into account (regime R1).
The upper row is for ı = 4.3, the lower row is for z = 0.8. The field ranges are (0, 1), (–88, 127) and (0.17, 0.23), (–55, 86).
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Fig. 4. Kinetic energy fluxes TK(k) for regimes (1) NR, (2) R1, and (3) R2.
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Fig. 5. Kinetic energy fluxes Tuu(k) for regimes (1) NR, (2)–(3) R1, and (4) R2.

k > kc. Let us examine the changes that appeared in more
detail. The position of absolute maximums (minimums)
falls to the region, close to kc, i.e., energy is transferred to
the region of large k from the leading mode. On the other

hand, for k < kc a sharp decrease of the energy flux is
observed, which corresponds to the approach of the sys-
tem to the statistical equilibrium, which is also observed in
Fig. 4. In the scaled-up version (see Fig. 5(3)) a finer struc-
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ture for small k is observed: domain A with the direct cas-
cade of energy, but with the equally probable energy trans-
fer both from small Q ~ K and from comparatively large
Q ~ 4ä. Domain B with the reverse cascade of energy
(and also, as in domain A with the small amplitude of the
energy flux of the order of 1/10th of the absolute maximum)
has the extended strip-like domain form from Q ~ ä to
Q ~ 10K. In Fig. 6 this corresponds to the appearance of
the small negative minimum for K > Q2.

2

An increase in Ra (regime R2) leads to the shift of the
domain with the reverse cascade of energy towards small
Q and ä > Q. As before, it is possible to speak about the
existence of the state close to the uniform distribution for
k < kc. This regime is also characterized by the longer
interval in the domain k > kc with the local energy transfer
and with the direct cascade. The relative contribution of
the domain with the reverse cascade becomes smaller (see
Fig. 6(3)). At the same time, this contribution is transferred
to the large-scale domain k � kc, that can be of interest for
problems of geodynamo, in which kc ~ 105 and the domain
of magnetic field generation (in the up-to-date estimates of
the Reynolds magnetic number Rm ~ 102–103 the domain of
magnetic field generation falls within the range k ~ 1–103)
differ by at least several orders of magnitude.

DISCUSSION AND CONCLUSIONS

The problem examined above about the mechanism
of the kinetic energy transfer in the fast-rotating liquid
is one of the elements of the full planetary dynamo

problem. The existence of the additional scale ~
connected with the cyclonic convection significantly com-
plicates the picture of energy transfer from one scale to the
other. If in the Kolmogorov turbulence between the main
scale (L) and dissipative scale (Re–3/4L) the system
remained completely self-similar with the direct kinetic
energy flux over the spectrum, then with the appearance of
rotation the possibility of the deceleration of energy trans-
fer in the long-wave spectrum range (k < kc) appears. In
this range, the domains with the reverse cascade of energy
appear, and energy is transferred directly from the small
scales (with k > kc). The latter resembles the idealized pic-
ture of the α-effect in the theory of the mean magnetic
field, in which it is assumed that the magnetic energy of
the large-scale magnetic field is created by the correlated
pulsations of the small-scale velocity field. More consis-
tent analysis (which is close to the analysis carried out
above for Tuu fluxes) also indicates the appearance of non-
local energy transfer [Verma, 2004; Alexakis et al., 2007].

In order to estimate the applicability of the obtained
results to the conditions of the Earth’s core it can be
assumed that in the liquid Earth’s core the Rayleigh
number is larger than its critical value by a factor of 500
[Jones, 2000]. Since this value is higher than the value

2  There is no comment on the behavior of the curve for K < Q
(domains C and D), since this dependence is antisymmetric.

kc
1– ,

of Ra used by us in the R2 regime, it can be assumed
that the spectrum of kinetic energy is close to the Kol-
mogorov one: V = V0k–1/3, where V0 = 4 × 10–4 m/s is the
rate of the western drift of the magnetic field. Then, the
ratio of the nonlinear term to the Coriolis force in the

Navier–Stokes equation will be � =  where  =

 = 2 × 10–6 is the dynamic Rossby number for the

Earth. For  = E–1/3 = 105, �(kc) = 3 × 10–3, i.e., within
the entire range of wave numbers 1 < k < kc the geo-
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Fig. 6. Kinetic energy fluxes Tuu(K – Q) for regimes (1) NR,
(2) R1, and (3) R2.



708

IZVESTIYA, PHYSICS OF THE SOLID EARTH      Vol. 45      No. 8       2009

RESHETNYAK

strophic balance of forces is present, and it is possible
to speak about the applicability of the analysis carried
out above and the conclusions in favor of the nonlocal
kinetic energy transfer at all scales, where the existence
of geomagnetic fields in the Earth’s core is assumed.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project no. 03-05-64074.

REFERENCES

1. A. Alexakis, P. D. Mininni, and A. Pouquet, “Shell to
Shell Energy Transfer in MHD. I. Steady State Turbu-
lence,” Phys. Rev., V.E 72 046301–046309 (2005).

2. A. Alexakis, P. D. Mininni, and A. Pouquet, “Turbulent
Cascades, Transfer, and Scale Interactions in Magneto-
hydrodynamics,” New Journal of Pysics, 298 (9), l–20
(2007).

3. G. K. Batchelor, The Theory of Homogeneous Turbu-
lence (Cambridge University Press, Cambridge, 1953)
pp. 1–195.

4. F. H. Busse, “Thermal Instabilities in Rapidly Rotating
Systems,” J. Fluid Mech., 44, 441–460 (1970).

5. F. Cattaneo, O. Emonet, and N. Weis, “On the Interaction
between Convection and Magnetic Fields,” Ap. J., 588,
1183–1198 (2003).

6. S. Chandrasekhar, Hydrodynamics and Hydromagnetic
Stability, (Dover Publications. Inc., New York, 1981),
pp. 1–654.

7. O. Debliquy, M. Verma, and D. Carati, “Energy Fluxes
and Shell-to-Shell Transfers in Three-Dimensional
Decaying Magnetohydrodynamic Turbulence,” Physics
of Plasmas, 12, 042309-1–042309-10 (2005).

8. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov
(Cambridge University Press., Cambridge, 1995) pp. 1–296.

9. C. A. Jones, “Convection-Driven Geodynamo Models,”
Phil. Trans. R. Soc. London. A358 873–897 (2000).

10. C. A. Jones, P. H. Roberts, “Convection Driven Dyna-
mos in a Rotating Plane Layer,” J. Fluid Mechanics, 404,
311–343 (2000).

11. R. H. Kraichnan and D. Montgomery, “Two-Dimen-
sional Turbulence,” Rep. Prog. Phys. 43, 547–619
(1980).

12. M. Meneguzzi and A. Pouquet, “Turbulent Dynamos
Driven by Convection,” J. Fluid Mech., 205, 297–318
(1989).

13. S. A. Orszag, “Numerical Simulation of Incompressible
Flows within Simple Boundaries. I. Galerkin (Spectral)
Representations,” Stud. Appl. Math., L (51), 293–327
(1971).

14. J. Pedlosky, Geophysical Fluid Dynamics (Springer-Ver-
lag, New York, 1987) pp. 1–710.

15. M. Yu. Reshetnyak, “Cascade Processes in Magneto-
strophic Turbulence,” Dokl. RAN (Geophysics), 420 (4)
527–531 (2008a).

16. M. Yu. Reshetnyak, “Heat Convection and Dynamo with
the Fast Rotation Motion,” Fiz. Zemli. 8, 23–32 (2007).

17. M. Yu. Reshetnyak, “Some Properties of Cyclonic Tur-
bulence in the Liquid Earth Core,” Geomagnetism and
Aeronomy, 48 (3) 416–423 (2008b).

18. M. Reshetnyak and B. Steffen, “Shell Models in Rapidly
Rotating Dynamo Systems,” Numerical Methods and Pro-
gramming, 7 85–92 (2006). (http://www.srcc.msu.su/ num-
meth/english/index.html)

19. H. A. Rose and P. I. Sulem, “Fully Developed Turbu-
lence and Statistical Mechanics,” J. Physique., 39, 441–
484 (1978).

20. P. Tabeling, “Two-Dimensional Turbulence: a Physicist
Approach,” Phys. Reports, 362 1–62 (2002).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


