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Many stars and planets have magnetic fields. The heat fluxes&8B convection of plasma
or metal, which can generate a large-scale magnetic fieddttiat observed. The small-scale
behavior, demonstrating self-similarity in a wide rangehef spatial and temporal scales, is a
field of active research using modeling, as it is usually rsteoved.

Rapid rotation gives a geostrophic system, where convedégenerates in the direction of the
axis of rotation and all variation along this axis is weakcl$a system is somewhere in between
the full 3D and 2D-systems. Its special properties show dperphysical and the spectral space
simultaneously. Pseudo-spectral modeling solves the PDdpectral space for easy calcula-
tions of integrals and derivatives. The nonlinear termscateulated physical space, requiring
many direct and inverse FFTs per time step. We apply thisitqak to the thermal convection
problem with heating from below in a Cartesian box. Aboveraghold of the kinetic energy
the system generates the magnetic field.

The most time consuming part of our MPI code is FFT transforfros efficiency, we selected a
FFT library which makes use of the symmetry of the fields. Tpineal number of processors
is ~ half the number of grid planes, with superlinear speedug Sihgle node performance is
poor, each processor delivering orly5% of its peak rate.

We see cyclonic convection with a cyclone density of the E~1/3 (E Ekman number
~ 10715 for earth). This causes a high anisotropy of the convectiem éor high Reynolds
numbers. Our simulations demonstrates the generatioredatbe-scale hydrodynamic helic-
ity. Helicity is an integral of the Navier-Stokes equatiangd it has close relation to theeffect
which generates the large scale magnetic field via the ssnalé turbulence. This process has
three stages:. At first, the magnetic field grows expondytiabm a small seed. When the
magnetic and kinetic energies are comparable the growitsgiown, and finally equilibrium
is reached. The magnetic field again quenches the helieitypéhg primarily the toroidal part
of velocity field. It slows down the rotation of the cyclones{j-cyclones). The helicity causes
a divergence (convergence) of the cyclones near the uppeer(l boundariesz(= 0, 1). Itis
generated at the boundaries and transported to center bbihdt changes sign at the middle
of the box.

Convection and dynamo systems are dissipative, so thelequih of the system in sense of
the statistical mechanics is not reached. The kinetic gnisrgnjected into the system at the
medium scale of cyclons, one sink of energy is at the smatbuis scale, another at the large
(magnetic field) scale. For some (small) scales the casdatte @nergy is direct (like it is
in the Kolmogorov’s like turbulence), for others (largeathcyclones) it is inverse, like it is
observed in 2D turbulence. At the small scales there is at@onenergy flux, as is plausible as
from theorie and from semi-empirical models.

1 Introduction

Almost all stars, the earth, and the planets larger thah &aste large scale magnetic fields
that are believed to be generated by a common universal mischa the conversion of
kinetic energy into magnetic energy in a turbulent rotahgll. The details, however,
- and thus the nature of the resulting field - differ greatlyheTonly fields observable
with good accuracy are that of the earth and of the sun. Thiecige for the dynamo
theory is to provide a model that can explain the visibleufezd of the field with realistic



assumptions on the model parameters. Calculations fomttire estar or planets are done
either with spectral modésr finite volume method$, and have demonstrated beyond
reasonable doubt that the turbulent 3D convection of thelgotive fluid -in the core for
earth, in an upper shell for the sun - can generate a large s@inetic field similar to the
one observed out of small random fluctuations. However, thetbe methods cannot cover
the enormous span of scales required for a realistic pasarset. For the geodynamo, the
time scale of the large scale convectiorig 0 years, during which the planet itself makes
~ 10° revolutions. Further on, viscosity operates at a scale ofimeters, compared
to the convective scale of 10 meters. Thus the effects of the small scale processes
have to be averaged and transported to the finest scale edseWich will be orders of
magnitude larger. For the sun and other stars, the situiinat better, the difference of
scales being frequently even larger. To verify the aveiggproaches and to understand
the interactions of the different scales of turbulencecwakions of small parts of the
earth’ core are required, at least partially bridging thp mascale. For this, we look at a
the thermal convection problem (in Boussinesque appraxampwith heating below in a
Cartesian box at the equatorial plane.

2 The equations

The geodynamo equations for the incompressible fl§id V. = 0) in the volume of
the scalel rotating with the angular velocit§ in the Cartesian system of coordinates
(z, y, z) in its traditional dimensionless form in physical space bamvritten as follows:
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The velocityV, magnetic fieldB, pressure® = p + EPr~ ' V2/2 and typical diffusion
time ¢ are measured in units of/ L, \/2Qkup;, px?/L? andL?/x respectively, where

k is thermal diffusivity, p is density,u permeability,Pr = " is the Prandtl number,
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is the Ekman number; is kinematic viscosityy is the magnetic diffusivity,
agodT L
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B =50
anddq = k/n is the Roberts numbeRa = - is the modified Rayleigh number,
« is the coefficient of volume expansiofi]” is the unit of temperature (see for more
detail®), g, is the gravitational acceleration, aatiis the heat source.
For boundary conditions, we assume a temperature gradantthe lower to the upper
boundary large enough to drive a convection, and perigdatiierwise, which leads to
odd or even symmetry relative to the equator.
Some features of the field can be seen from a dimensionalsasalyeady. The extreme
smallness of the Ekman number means that the terms withouidt atmost cancel out,
which without magnetic field results in a geostrophic batawbere all fluxes transverse
to the rotation are blocked by the Coriolis force and cyatanition is generated. With
the magnetic field, a magnetostrophic balance or a mixtiemseossible, depending on



the scale considered.

The direct numerical integration of these equations is riftient, much larger time
steps and easier calculations can be achieved by transipriiné equations into wave
space. Also, some features of the solution show up muchrhietigave space than in
physical space, and especially the separation of scalesreecclear there. Because the
calculations of the nonlinear terms in wave space would lHierfatrix operations, they
have to be done in physical space, requiring FFT transforail @fuantities in every time
step, which will dominate the computing time.

After elimination of the pressure usidg- V = 0, k- B = 0 and transforming the

equations into wave space we come to
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For integration in time we use explicit Adams-Bashforth @Bcheme for the non-linear
terms. The linear terms are treated using the Crank-Niodl6dl) scheme. To resolve the
diffusion terms we used a well known trick which helps to gmse the time step signifi-

Oyt
cantly. We rewrite2 + k4 = U in the form% = U "7t and then apply the CN
scheme.

3 Parallel FFT for the equations

The program shows slightly superlinear speedup up to psoc@simber of half the number
of physical planes, so parallelizing is not a problem. Hasvethe single node performance
is a problem. The Fourier transforms dominate the compuimgs, in the implementa-
tion used they make up about 85%, so the FFTs are subjecutarspection. Special
tests were done on a physical grid of 128*129*128 real val(gcond dimension is log-
ically 256 and even), and using 4 processors of jump for theutations, both direct and
inverse Fourier transform take slightly less than 6 ms euwfth, the difference less than
the variations in the timings.

The direct transforms is a transform from 3D real with synmnet the second coor-
dinate (due to the conventional placement of coordinategophysics), size nx*ny*nz,
into a 3D complex array of slightly more than half the sizeeflundancies are eliminated.
There is no software available doing exactly this, not ewsjuentially. Therefore the FFT
was put together from the sequential 1D FFT providetiiysed o' , and some data
movements in the following (natural) order: The data conissitluted on the processors



along the last component. As a first step, nx*nz transformsgthe second component -
real even symmetric to real even symmetric or real odd symicrtetpurely imaginary odd
symmetric - are done using routine RDCT. (cosine transfaniDST (Sine transform).
After this, the array is transformed, such that now it istsglbng the second component.
During the transform usingupi_alltoallv, the second and third indices are exchanged for
better access. Then nx*ny complex transforms in directidallbw, and finally ny*nz
transforms in direction x.

This procedure was chosen for ease of development and figxiliiis reasonably fast
but not optimal. An analysis using hardware counter momitpthpmcount®) gave the
following result:

Cosine Transg FFT compl| reshape for] MPI_alltoallv
alltoall
load and store ops| 18.6 M 36.5M 42 M 0.065M

Instr. per cycle 0.60 0.95 0.82 1.310

MFlips per sec 206 302 21.2 0.0
user time 0.0516 0.0782 0.0098 0.006
Loads per TLB misg 3976 257 21667 22464
L2 cache miss rate| 0.024 0.116 0.053 0.048

Both the cosine transform and the FFT include collectingdhi to a stride 1 vector for
every transform. According to gpr§fdata, in a longer run the 3D FFT takes 34.5 s, of
which only 14 s are spend in the 1D transforms, and 21.5 s inmgalata (including the
MPI call). It is now clear that the actual FFT is not more thaif the time, assembling
the data is of the same order, even though the processoeafficof the FFT code is low,
it runs at~ 5% of the peak performance. The main problem seems to be the TiE8 m
rate, though L2 and L3 cache misses are quite high, also. iMegsie FFT performs the
inverse operations in inverse order, the timing is almosiségme.

For optimization of the FFT, the first approach is using adseRFT routine. since
the program development, a new release of FETWIs appeared which includes real
symmetric FFT that was previously missing. It also contairovisions to do the ny plane
FFTs in one step. Tests show FFTW to be faster than the FFTtilissaiv.

A second step is moving from complex-to-complex plane fiamnss to real-to-complex,
as the result of the first transform is real or purely imaginafhis saves some data
handling and half the communication volume. For the evenrsgtry the process is
straightforward, for the odd symmetry, the final result hasbe multiplied with the
imaginary unit, which costs one sweep over the data.

The third step is arranging the data in a way that memory accemes with as small a
stride as possible. This means arranging the coordinatas iorder different from the
customary one, which is not an option during developmentmfogram. It also requires
changes in almost any part of the program, not only in the wwautines organizing the
FFT. All these together may cut the time for the FFT in halfjchbstill means that it is
the dominating part, so optimizing the implementation diestparts is not reasonable.

While the tests were performed using a small number of psarssproduction runs
use much more, such that each processor may contain onlyrtfemioplanes of the grid
for every quantity. This does effect our discussion abovg with respect to the array
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Figure 1. Thermal convection with rapid rotatioW (= nz = ny = nz = 64) Pr = 1, Ra = 1.3103,
E = 2107°. for T (left column) ©, 1,0.43, 0.60), V,, (middle ) (~745, 548, —904, 979) and V. (right)
(=510, 501,—651, 784). The upper line corresponds to the sectior= 0.5, and the lower tac = 0. The
numbers are (min,max) values of the fields.

transform, which needs more but smaller messages for arlargaber of processors.
However, the communication time stays small up to 64 prawsessObviously, having
more processors than planes in the grid would require a ceteipldifferent organization.

4 Results

4.1 Pure convection, no magnetic field

The thermal convection with a rapid rotatidRd < 1) is characterized by a large number
of the vertical columns (cyclones and anticyclones). Thamber depends on the Ekman
number ag:. ~ E~'/32, For the liquid core of the Earth ~ 10!, what is obviously
prohibits simulations for the realistic range of parametddsually, one reach only with
aE = 10~* + 10795, The second important parameter is a Rayleigh number thasgri
intensity of the the heat sources. The critical Rayleigh bemm(when convection starts)
depends o asRa® ~ E~/3. Further we consider three regimes:

NR: Regime without rotatiolfRa = 9 - 10°, Pr = 1, E = 1, Re ~ 700.
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Figure 2. Onthe leftis spectra of the kinetic energy for Nirc(es), R1, R2 (diamonds). The dot line corresponds
to the Kolmogorov's spectrumy k—5/3, the solid line is~ k3. On the right is a flow of the kinetic energy
in the wave space for NR (circle), R1 (dotted line), R2 (dianis).

R1: Regime with rotationRa = 4 - 102, Pr = 1, E = 2 - 1072, Re ~ 200.
R2: Regime with rotationRa = 1-10%, Pr = 1, E = 2- 107°, Re ~ 10*.

R1 corresponds to geostrophic state in vicinity of the thoésof generation with a typical
regular columnar structure. IncreaseRxf (regime R2) breaks regular structure, appear-
ance of the small-scale flows, deviation from geostrophyagggeostrophic state). The
non-linear term in the is comparable with the Coriolis foes®l pressure gradient. The
temporal behavior becomes chaotic.

Now we consider spectra of the kinetic energy Fig. 2. Thetspecwithout rotation
NR is similar to the Kolmogorov’'s one. The marginal regime iRk clear maximum at
k. ~ 8. Increase oRa (R2) leads to the fill of the gap in the spectra&at k. and spectra
tends to the non-rotating spectra. However observabldagityiof R2 and NR regimes
does not mean similarity of the intrinsic physical procesdéhus, in the two-dimensional
turbulence the spectra of the kinetic energy with &%/ is observable also, however the
energy transfer in contrast to the Kolmogorov’s one (withraat cascade) comes from the
small scales to the large orfes

Consider what happens with a flow of the kinetic energy in tagenspace. The non-
rotating regime demonstrates well-known scenario of thémdgorov’s direct cascade
Fig. 2. For the large scalés < 0: these scales are the sources of the energy. Coming to
the infrared part of the spectra sign of the flow changes s & the positive: here is a
sink of the energy. Note, that for the two-dimensional tlghae the mirror-symmetrical
picture is observablgthe inverse cascade).

Rotation essentially changes behavioffofn k-space. Now, the source of the energy
corresponds té&.. Fork > k. we observe a direct cascade of the enefgy- 0. For
k < k. picture is more complex: for the first wave numbers there ighaerse cascade
7T > 0, while in the large part of the wave regién< k. the cascade is still dire@t < 0.
IncreasindRe leads to a narrowing of the inverse cascade region. Proliadlgppearance
of the inverse cascade connected with a non-local interaati k-spacé’.



4.2 Full dynamo regime

Figure 3. Evolution of the integral quantities (from the)top2, kinetic
energyFE i, magnetic energy,, vertical dipoleDip for E = 104,
Pr = 1, Ra = 6 - 102, 9 = 10. At t; we inject magnetic field.
t3 corresponds to an equilibrium regime, when growth of themetig
field stops.

The magnetic field genera-
tion is critical phenomenon,
its starts when the magnetic
Reynolds numberR,, =
R.,.“". Without feed back
of the magnetic field on
the flow (kinematic regime
KC) magnetic energy grows
Rnm > Rn (or decays
Rm < Rin") exponentially
in time. In Fig. 3 we present
transition of the system from
the pure convection regime
(0 < t < t) to the KC
regime ¢ < t < t3)
and then to the full dynamo
regime(t > t2). Itis clear,
that influence of magnetic
field onto the flow appearsin
decrease oR,,. The more
detailed analysis reveals that
mainly the toroidal compo-
nent of the kinetic energy
is suppresses. In its turn,
decrease of the toroidal ve-
locity leads to decrease of
the hydrodynamic helicity.
So far the mean helicity is
a source of the mean mag-
netic field the suppression
of the magnetic field gener-
ation starts.

5 Concluding
Remarks

The magnetic fields of the
planets are the main sources

of information on the processes in the liquid cores at thesitg? — 103yy and more. If
the poloidal part of the magnetic field is observable at tlam@l surface, then the largest
component of field (toroidal) as well as the kinetic energstrdibution over the scales is
absolutely invisible for the observer out of the core. M@ due to finite conductivity
of the mantle even the poloidal part of the magnetic field isaffiat £ < k.. In other
words the observable part of the spectra at the planetsceug@nly a small part (not even



the largest) of the whole spectra of the field. That is why ingoace of the numerical
simulation is difficult to overestimate. Here we showed thaid rotation leads to the very
interesting phenomenon: inverse cascade in the kinetiggt@ansfer over the scales. The
other interesting point is a hydrodynamic helicity suppi@s by a growing magnetic field
which is key to understanding of how the dynamo system resaitteeequilibrium state.
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