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Many stars and planets have magnetic fields. The heat flux causes 3D convection of plasma
or metal, which can generate a large-scale magnetic field like that observed. The small-scale
behavior, demonstrating self-similarity in a wide range ofthe spatial and temporal scales, is a
field of active research using modeling, as it is usually not observed.
Rapid rotation gives a geostrophic system, where convection degenerates in the direction of the
axis of rotation and all variation along this axis is weak. Such a system is somewhere in between
the full 3D and 2D-systems. Its special properties show up inthe physical and the spectral space
simultaneously. Pseudo-spectral modeling solves the PDE in spectral space for easy calcula-
tions of integrals and derivatives. The nonlinear terms arecalculated physical space, requiring
many direct and inverse FFTs per time step. We apply this technique to the thermal convection
problem with heating from below in a Cartesian box. Above a threshold of the kinetic energy
the system generates the magnetic field.
The most time consuming part of our MPI code is FFT transforms. For efficiency, we selected a
FFT library which makes use of the symmetry of the fields. The optimal number of processors
is ∼ half the number of grid planes, with superlinear speedup. The single node performance is
poor, each processor delivering only∼ 5% of its peak rate.
We see cyclonic convection with a cyclone density of the∼ E−1/3 (E Ekman number
∼ 10−15 for earth). This causes a high anisotropy of the convection even for high Reynolds
numbers. Our simulations demonstrates the generation of the large-scale hydrodynamic helic-
ity. Helicity is an integral of the Navier-Stokes equation,and it has close relation to theα-effect
which generates the large scale magnetic field via the small-scale turbulence. This process has
three stages:. At first, the magnetic field grows exponentially from a small seed. When the
magnetic and kinetic energies are comparable the growth slows down, and finally equilibrium
is reached. The magnetic field again quenches the helicity, damping primarily the toroidal part
of velocity field. It slows down the rotation of the cyclones (anti-cyclones). The helicity causes
a divergence (convergence) of the cyclones near the upper (lower) boundaries (z = 0, 1). It is
generated at the boundaries and transported to center of thebox. It changes sign at the middle
of the box.
Convection and dynamo systems are dissipative, so the equilibrium of the system in sense of
the statistical mechanics is not reached. The kinetic energy is injected into the system at the
medium scale of cyclons, one sink of energy is at the small viscous scale, another at the large
(magnetic field) scale. For some (small) scales the cascade of the energy is direct (like it is
in the Kolmogorov’s like turbulence), for others (larger than cyclones) it is inverse, like it is
observed in 2D turbulence. At the small scales there is a constant energy flux, as is plausible as
from theorie and from semi-empirical models.

1 Introduction

Almost all stars, the earth, and the planets larger than earth have large scale magnetic fields
that are believed to be generated by a common universal mechanism - the conversion of
kinetic energy into magnetic energy in a turbulent rotatingshell. The details, however,
- and thus the nature of the resulting field - differ greatly. The only fields observable
with good accuracy are that of the earth and of the sun. The challenge for the dynamo
theory is to provide a model that can explain the visible features of the field with realistic
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assumptions on the model parameters. Calculations for the entire star or planets are done
either with spectral models6 or finite volume methods12, and have demonstrated beyond
reasonable doubt that the turbulent 3D convection of the conductive fluid -in the core for
earth, in an upper shell for the sun - can generate a large scale magnetic field similar to the
one observed out of small random fluctuations. However, boththese methods cannot cover
the enormous span of scales required for a realistic parameter set. For the geodynamo, the
time scale of the large scale convection is∼ 103 years, during which the planet itself makes
∼ 106 revolutions. Further on, viscosity operates at a scale of centimeters, compared
to the convective scale of∼ 106 meters. Thus the effects of the small scale processes
have to be averaged and transported to the finest scale resolved, which will be orders of
magnitude larger. For the sun and other stars, the situationis not better, the difference of
scales being frequently even larger. To verify the averaging approaches and to understand
the interactions of the different scales of turbulence, calculations of small parts of the
earth’ core are required, at least partially bridging the gap in scale. For this, we look at a
the thermal convection problem (in Boussinesque approximation) with heating below in a
Cartesian box at the equatorial plane.

2 The equations

The geodynamo equations for the incompressible fluid (∇ · V = 0) in the volume of
the scaleL rotating with the angular velocityΩ in the Cartesian system of coordinates
(x, y, z) in its traditional dimensionless form in physical space canbe written as follows:

∂B

∂t
= ∇× (V × B) + q−1 ∆B

EPr−1

[

∂V

∂t
+ (V · ∇)V

]

= −∇P − 1z × V + Ra T z1z + (∇× B) × B + E∆V

∂T

∂t
+ (V · ∇) (T + T0) = ∆T + G(r).

(1)
The velocityV, magnetic fieldB, pressureP = p + E Pr−1 V 2/2 and typical diffusion
time t are measured in units ofκ/L,

√

2Ωκµρ;, ρκ2/L2 andL2/κ respectively, where

κ is thermal diffusivity,ρ is density,µ permeability,Pr =
κ

ν
is the Prandtl number,

E =
ν

2ΩL2
is the Ekman number,ν is kinematic viscosity,η is the magnetic diffusivity,

andq = κ/η is the Roberts number.Ra =
αg0δTL

2Ωκ
is the modified Rayleigh number,

α is the coefficient of volume expansion,δT is the unit of temperature (see for more
details5), g0 is the gravitational acceleration, andG is the heat source.
For boundary conditions, we assume a temperature gradient from the lower to the upper
boundary large enough to drive a convection, and periodicity otherwise, which leads to
odd or even symmetry relative to the equator.
Some features of the field can be seen from a dimensional analysis already. The extreme
smallness of the Ekman number means that the terms without E must almost cancel out,
which without magnetic field results in a geostrophic balance where all fluxes transverse
to the rotation are blocked by the Coriolis force and cyclonic motion is generated. With
the magnetic field, a magnetostrophic balance or a mixture seems possible, depending on
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the scale considered.
The direct numerical integration of these equations is not efficient, much larger time
steps and easier calculations can be achieved by transforming the equations into wave
space. Also, some features of the solution show up much better in wave space than in
physical space, and especially the separation of scales becomes clear there. Because the
calculations of the nonlinear terms in wave space would be full matrix operations, they
have to be done in physical space, requiring FFT transform ofall quantities in every time
step, which will dominate the computing time.

After elimination of the pressure usingk · V = 0, k · B = 0 and transforming the
equations into wave space we come to1

[

∂B

∂t
+ q−1 k2

B

]

k

= [∇× (V × B)]
k

E

[

Pr−1 ∂V

∂t
+ k2

V

]

k

= kPk + Fk

[

∂T

∂t
+ k2T

]

k

= − [(V · ∇)T ]
k

+ G(k)

(2)

with Pk = −
k · Fk

k2
, k2 = kβkβ , β = 1 . . . 3

Fk =
[

Pr−1
V × (∇× V) + Ra T1z − 1z × V + (B · ∇)B

]

k
.

(3)

For integration in time we use explicit Adams-Bashforth (AB2) scheme for the non-linear
terms. The linear terms are treated using the Crank-Nicolson (CN) scheme. To resolve the
diffusion terms we used a well known trick which helps to increase the time step signifi-

cantly. We rewrite∂A
∂t + k2A = U in the form ∂Aek0γt

∂t = U ek2γt and then apply the CN
scheme.

3 Parallel FFT for the equations

The program shows slightly superlinear speedup up to processor number of half the number
of physical planes, so parallelizing is not a problem. However, the single node performance
is a problem. The Fourier transforms dominate the computingtimes, in the implementa-
tion used they make up about 85%, so the FFTs are subject careful inspection. Special
tests were done on a physical grid of 128*129*128 real values, (second dimension is log-
ically 256 and even), and using 4 processors of jump for the calculations, both direct and
inverse Fourier transform take slightly less than 6 ms each,with the difference less than
the variations in the timings.

The direct transforms is a transform from 3D real with symmetry in the second coor-
dinate (due to the conventional placement of coordinates ingeophysics), size nx*ny*nz,
into a 3D complex array of slightly more than half the size, ifredundancies are eliminated.
There is no software available doing exactly this, not even sequentially. Therefore the FFT
was put together from the sequential 1D FFT provided by9 based on11,13 , and some data
movements in the following (natural) order: The data comes distributed on the processors
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along the last component. As a first step, nx*nz transforms along the second component -
real even symmetric to real even symmetric or real odd symmetric to purely imaginary odd
symmetric - are done using routine RDCT. (cosine transform)or RDST (Sine transform).
After this, the array is transformed, such that now it is split along the second component.
During the transform usingmpi alltoallv, the second and third indices are exchanged for
better access. Then nx*ny complex transforms in direction zfollow, and finally ny*nz
transforms in direction x.
This procedure was chosen for ease of development and flexibility, it is reasonably fast
but not optimal. An analysis using hardware counter monitoring (hpmcount,15) gave the
following result:

Cosine Trans FFT compl reshape for MPI alltoallv
alltoall

load and store ops 18.6 M 36.5 M 4.2 M 0.065 M
Instr. per cycle 0.60 0.95 0.82 1.310
MFlips per sec 206 302 21.2 0.0

user time 0.0516 0.0782 0.0098 0.006
Loads per TLB miss 3976 257 21667 22464
L2 cache miss rate 0.024 0.116 0.053 0.048

Both the cosine transform and the FFT include collecting thedata to a stride 1 vector for
every transform. According to gprof16 data, in a longer run the 3D FFT takes 34.5 s, of
which only 14 s are spend in the 1D transforms, and 21.5 s in moving data (including the
MPI call). It is now clear that the actual FFT is not more than half the time, assembling
the data is of the same order, even though the processor efficiency of the FFT code is low,
it runs at∼ 5% of the peak performance. The main problem seems to be the TLB miss
rate, though L2 and L3 cache misses are quite high, also. The inverse FFT performs the
inverse operations in inverse order, the timing is almost the same.
For optimization of the FFT, the first approach is using a better FFT routine. since
the program development, a new release of FFTW3 has appeared which includes real
symmetric FFT that was previously missing. It also containsprovisions to do the ny plane
FFTs in one step. Tests show FFTW to be faster than the FFT usedtill now.
A second step is moving from complex-to-complex plane transforms to real-to-complex,
as the result of the first transform is real or purely imaginary. This saves some data
handling and half the communication volume. For the even symmetry the process is
straightforward, for the odd symmetry, the final result has to be multiplied with the
imaginary unit, which costs one sweep over the data.
The third step is arranging the data in a way that memory access comes with as small a
stride as possible. This means arranging the coordinates inan order different from the
customary one, which is not an option during development of aprogram. It also requires
changes in almost any part of the program, not only in the two subroutines organizing the
FFT. All these together may cut the time for the FFT in half, which still means that it is
the dominating part, so optimizing the implementation of other parts is not reasonable.

While the tests were performed using a small number of processors, production runs
use much more, such that each processor may contain only two or four planes of the grid
for every quantity. This does effect our discussion above only with respect to the array
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Figure 1. Thermal convection with rapid rotation (N = nx = ny = nz = 64) Pr = 1, Ra = 1.3 103,
E = 210−5. for T (left column) (0, 1,0.43, 0.60), Vy (middle ) (−745, 548, −904, 979) andVz (right)
(−510, 501,−651, 784). The upper line corresponds to the sectionz = 0.5, and the lower tox = 0. The
numbers are (min,max) values of the fields.

transform, which needs more but smaller messages for a larger number of processors.
However, the communication time stays small up to 64 processors. Obviously, having
more processors than planes in the grid would require a completely different organization.

4 Results

4.1 Pure convection, no magnetic field

The thermal convection with a rapid rotation (Ro ≪ 1) is characterized by a large number
of the vertical columns (cyclones and anticyclones). Theirnumber depends on the Ekman
number askc ∼ E−1/32. For the liquid core of the EarthE ∼ 10−15, what is obviously
prohibits simulations for the realistic range of parameters. Usually, one reach only with
a E = 10−4 ÷ 10−65. The second important parameter is a Rayleigh number describing
intensity of the the heat sources. The critical Rayleigh number (when convection starts)
depends onE asRacr

∼ E−1/3. Further we consider three regimes:

NR: Regime without rotation,Ra = 9 · 105, Pr = 1, E = 1, Re ∼ 700.
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Figure 2. On the left is spectra of the kinetic energy for NR (circles), R1, R2 (diamonds). The dot line corresponds
to the Kolmogorov’s spectrum∼ k−5/3, the solid line is∼ k−3. On the right is a flow of the kinetic energyT
in the wave space for NR (circle), R1 (dotted line), R2 (diamonds).

R1: Regime with rotation,Ra = 4 · 102, Pr = 1, E = 2 · 10−5, Re ∼ 200.

R2: Regime with rotation,Ra = 1 · 103, Pr = 1, E = 2 · 10−5, Re ∼ 104.

R1 corresponds to geostrophic state in vicinity of the threshold of generation with a typical
regular columnar structure. Increase ofRa (regime R2) breaks regular structure, appear-
ance of the small-scale flows, deviation from geostrophy (quasigeostrophic state). The
non-linear term in the is comparable with the Coriolis forceand pressure gradient. The
temporal behavior becomes chaotic.

Now we consider spectra of the kinetic energy Fig. 2. The spectrum without rotation
NR is similar to the Kolmogorov’s one. The marginal regime R1has clear maximum at
kc ∼ 8. Increase ofRa (R2) leads to the fill of the gap in the spectra atk < kc and spectra
tends to the non-rotating spectra. However observable similarity of R2 and NR regimes
does not mean similarity of the intrinsic physical processes. Thus, in the two-dimensional
turbulence the spectra of the kinetic energy with a∼ k−5/3 is observable also, however the
energy transfer in contrast to the Kolmogorov’s one (with a direct cascade) comes from the
small scales to the large ones7.

Consider what happens with a flow of the kinetic energy in the wave space. The non-
rotating regime demonstrates well-known scenario of the Kolmogorov’s direct cascade
Fig. 2. For the large scalesT < 0: these scales are the sources of the energy. Coming to
the infrared part of the spectra sign of the flow changes its sign to the positive: here is a
sink of the energy. Note, that for the two-dimensional turbulence the mirror-symmetrical
picture is observable7 (the inverse cascade).

Rotation essentially changes behavior ofT in k-space. Now, the source of the energy
corresponds tokc. For k > kc we observe a direct cascade of the energyT > 0. For
k < kc picture is more complex: for the first wave numbers there is aninverse cascade
T > 0, while in the large part of the wave regionk < kc the cascade is still directT < 0.
IncreasingRe leads to a narrowing of the inverse cascade region. Probablythe appearance
of the inverse cascade connected with a non-local interaction in k-space14.
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4.2 Full dynamo regime
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Figure 3. Evolution of the integral quantities (from the top): T 2, kinetic
energyEK , magnetic energyEM , vertical dipoleDip for E = 10−4,
Pr = 1, Ra = 6 · 102, q = 10. At t1 we inject magnetic field.
t3 corresponds to an equilibrium regime, when growth of the magnetic
field stops.

The magnetic field genera-
tion is critical phenomenon,
its starts when the magnetic
Reynolds numberRm =
Rm

cr. Without feed back
of the magnetic field on
the flow (kinematic regime
KC) magnetic energy grows
Rm > Rm

cr (or decays
Rm < Rm

cr) exponentially
in time. In Fig. 3 we present
transition of the system from
the pure convection regime
(0 < t < t1) to the KC
regime (t1 < t < t2)
and then to the full dynamo
regime(t > t2). It is clear,
that influence of magnetic
field onto the flow appears in
decrease ofRm. The more
detailed analysis reveals that
mainly the toroidal compo-
nent of the kinetic energy
is suppresses. In its turn,
decrease of the toroidal ve-
locity leads to decrease of
the hydrodynamic helicity.
So far the mean helicity is
a source of the mean mag-
netic field8 the suppression
of the magnetic field gener-
ation starts.

5 Concluding
Remarks

The magnetic fields of the
planets are the main sources

of information on the processes in the liquid cores at the times102 − 103yy and more. If
the poloidal part of the magnetic field is observable at the planet surface, then the largest
component of field (toroidal) as well as the kinetic energy distrubution over the scales is
absolutely invisible for the observer out of the core. Moreover, due to finite conductivity
of the mantle even the poloidal part of the magnetic field is cut off at k ≪ kc. In other
words the observable part of the spectra at the planets surface is only a small part (not even
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the largest) of the whole spectra of the field. That is why importance of the numerical
simulation is difficult to overestimate. Here we showed thatrapid rotation leads to the very
interesting phenomenon: inverse cascade in the kinetic energy transfer over the scales. The
other interesting point is a hydrodynamic helicity suppression by a growing magnetic field
which is key to understanding of how the dynamo system reaches the equilibrium state.
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