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1. INTRODUCTION

Conversion of thermal energy into the kinetic
energy of motion of a conducting medium and further
into the energy of a magnetic field is the subject of the
dynamo theory [Zeldovich et al., 1983; Hollerbach and
Rüdiger, 2004]. At present, the dynamo theory provides
an explanation for magnetic fields observed in many
astrophysical objects: the universe, galaxies and their
clusters, stars, and planets.

In all these objects, the magnetic field exists for a
considerably longer time than the characteristic time of
dissipation, and this indicates the presence of a mecha-
nism of field generation. Probably, the most remarkable
results obtained in recent years in the field of the
dynamo theory were derived from the modeling of geo-
dynamo processes by Glatzmaier and Roberts [1995].
They considered the dynamo problem in the Earth’s liq-
uid core and developed a model in good agreement with
both the observed magnetic field at the Earth’s surface
and some nonmagnetic benchmarks such as the rota-
tional velocity of the Earth’s solid core and (by the
order of magnitude) the thermal, kinetic, and magnetic
energy of fields. The unceasing interest in the works of
Glatzmaier and Roberts is also due to the fact that their
model is based on the concepts of small-scale fields,
which have not been rigorously substantiated, so that
the proposed models and hypotheses require interpreta-
tion and analysis. Since simple estimations (e.g., see
[Reshetnyak, 2005]) show that the hydrodynamic and
magnetic Reynolds numbers in the Earth’s liquid core
are large (Re 

 

~ 10

 

9

 

 and Re

 

m

 

 

 

~ 10

 

3

 

), the description of
the system behavior on small scales and the develop-
ment of semiempirical models of turbulence are of fun-
damental importance for the geodynamo theory. In
view of the fact that the cores of planets rotate rapidly,
i.e., the daily rotation period is several orders of magni-

tude shorter than the characteristic convective times,
inverse cascades of energies can arise [Lesieur, 1997;
Tabeling, 2002]. This implies that, on small scales 
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,
where 

 

�

 

 is the scale of the core, not only the energy
dissipation but also the energy flux to larger scales is
possible. In the magnetic field problem, the magnetic
energy can be transferred to larger scales due to nonlo-
cal interactions, for example, from the scale of turbu-
lence to the principal scale (the 

 

α

 

 effect), and locally
across the spectrum, as is accepted in the Kolmogorov
theory [Frisch, 1995]. It is obvious that the study of
flow structure on small scales by means of direct
numerical modeling is very important for the subse-
quent construction of large-scale dynamo models.

Although sphericity plays an important role in plan-
etary dynamo problems, its incorporation only compli-
cates the calculations involved in the modeling of
small-scale fields. On the one hand, the Rossby scales
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 ~ 10

 

–5

 

�

 

 (i.e., the scales on which the Coriolis force
becomes of the same order as the nonlinear term in the
Navier–Stokes equation) are still beyond the capabili-
ties of the best modern computers; on the other hand, an
increase in the density of grids in spherical coordinates
leads to an excessive decrease in the time step. Model-
ing in Cartesian coordinates substantially extends the
range of accessible scales and, because of the simpler
form of equations in these coordinates, accelerates
computations by at least one order of magnitude and
improves the resolution. Thus, in planetary dynamo
problems, it is possible that, on small scales 
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, the
field energy in the bulk of the liquid core is comparable
to that on larger scales [Kutzner and Cristensen, 2002;
Simitev, 2004] (see also the discussion in [Reshetnyak,
2006]). Since small-scale fields are invisible to the
observer on the Earth’s surface and their characteristics
depend weakly on both the geometry of the region and
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the boundary conditions [Sarson and Jones, 1997;
Reshetnyak and Steffen, 2005], the analysis of the
problem in a box can be very useful. Below, we exam-
ine how some interesting properties of a planetary
dynamo system can be reproduced with the help of a
sufficiently simple model in a rotating rectangular box
simulating the behavior of magnetohydrodynamic tur-
bulence far from solid boundaries.

2. DYNAMO EQUATIONS

We consider the dynamo equations for an incom-
pressible liquid (

 

∇

 

 

 

·

 

 

 

V

 

 = 0) in an infinite layer 0 

 

≤

 

 

 

z

 

 

 

≤

 

 1
rotating at an angular velocity 

 

Ω

 

 about the vertical axis 

 

z

 

.
We introduce the following units of measurement for
the velocity 

 

V

 

, time 

 

t

 

, pressure 

 

P

 

, and magnetic field 

 

B

 

:

 

κ

 

/

 

L
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L

 

2

 

/

 

κ
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ρκ

 

2

 

/

 

L

 

2

 

, and 

 

2

 

Ωρκµ

 

0

 

, where 

 

L

 

 is the unit of
length, 

 

κ

 

 is the coefficient of molecular thermal con-
ductivity, 

 

ρ

 

 is the density of the material, and 

 

µ

 

0

 

 is the
magnetic constant. The system of dynamo equations in
a Cartesian coordinate system (

 

x

 

, 

 

y

 

, 

 

z

 

) can then be writ-
ten as (see the spherical geometry case in [Jones,
2000a])

 

(1)

 

The dimensionless Prandtl, Ekman, Rayleigh, and

Roberts numbers are Pr = , E = , Ra =

, and 

 

q

 

 = 

 

, where 

 

ν

 

 is the kinematic vis-

cosity, 

 

α

 

 is the volume expansion coefficient, 

 

g

 

0

 

 is
the gravitational acceleration, 

 

δ

 

T

 

 is the perturbation
of the temperature 

 

T

 

 relative to the “diffuse” temper-
ature distribution 

 

T

 

0

 

 = 1 – 

 

z

 

,

 

 and 

 

η

 

 is the magnetic
diffusivity. We define the Rossby number as Ro =

 

EPr

 

–1

 

.
Since we are interested in small-scale solutions, we

reduce, in the horizontal plane (

 

x

 

, 

 

y

 

), the problem in an
infinite layer to the problem in a box with boundary
conditions periodic in 

 

x

 

 and 

 

y

 

 [Cattaneo, 2003]. At the
boundaries 

 

z

 

 = 0, 1, we assume zero perturbations of
temperature 

 

T

 

 = 0; considering the chosen profile of 

 

T

 

0

 

,
this is equivalent to the respective boundary tempera-
tures 

 

�

 

 = 

 

T

 

 + 

 

T

 

0

 

 = 1, 0. For the velocity field, we
assume the impenetrability condition and zero gradi-
ents of the tangential components of the field: 

 

V

 

z

 

 =

∂B
∂t
------- curl V B×( ) q 1– ∆B,+=

EPr 1– ∂V
∂t
------- V– ∇ V×( )×

=  curlB B× ∇P– 1z– V× RaT1z E∆V,+ +

∂T
∂t
------ V ∇⋅( ) T T0+( )+ ∆T .=

ν
κ
--- ν

2ΩL2
-------------

αg0δTL
2Ωκ

------------------- κ
η
---

 =  = 0 at z = 0, 1. We also require that the mag-

netic field normal component Bz at the boundary be
continuous and the tangential field components vanish,

Bx = By =  = 0. This formulation of the boundary

conditions guarantees that the tangential components of
the viscous stress tensor and the toroidal component of
the magnetic field at the boundaries vanish.

3. NUMERICAL METHODS

3.1. Pseudospectral Method 

The basic idea of the pseudospectral method is the
numerical integration of equations in partial derivatives
of form (1) in the wave space [Orszag, 1971]. In this
case, the differentiation and integration operations
reduce, respectively, to multiplication and division by
the corresponding wave number, which ensures the
computer accuracy of calculations. Nonlinear terms are
calculated by transition to the physical space, multipli-
cation of the fields, and backward transition to the wave
space. In this approach, the majority of operations are
performed to pass from one space to another and these
transitions must be “fast.” In the Cartesian coordinate
system under consideration, we use the fast Fourier
transform (FFT) adapted to parallel computations.

The system of equations (1) in the wave space can
be written as [Buffett, 2003]

(2)

where

(3)

T, V, and B are 3-D Fourier transforms of the initial
physical fields; and k is the wave vector. Let the field
f  in the physical space be specified on the grid G =
(1, …, Nx; 1, …, Ny; 1, …, Nz). Then, the physical and
wave representations in a box of height 1 with a square
base of length λ are interrelated as

(4)

∂V x

∂z
---------

∂Vy

∂z
---------

∂Bz

∂z
--------

∂B
∂t
------- q 1– k2B+

k

∇ V B×( )×[ ]k,=

E Pr 1– ∂V
∂t
------- k2V+

k
k�k Fk,+=

∂T
∂t
------ k2T+

k

V ∇⋅( ) T T0+( )[ ]k,–=

�k
k Fk⋅

k2
-------------, k2– kβkβ, β 1 … 3,, ,= = =

Fk = EPr 1– V ∇ V×( )× RaT 1z–+ V× B ∇⋅( )B+[ ]k;

f x y z, ,( )

=    f̂ nx ny nx, ,( )e
i kx x kyy+( )

φ kzz( ),
nz Nz/2–=

Nz/2

∑
ny Ny/2–=

Ny/2

∑
nx Nx/2–=

Nx/2

∑
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where

(5)

and φ is sine or cosine (or their combinations), depend-
ing on the form of boundary conditions. Henceforth, for

convenience, we omit the symbol .

The Navier–Stokes equation in (2)–(5) requires an
explanation. First, to reduce numerical instabilities due
to aliasing, we wrote this equation in (1) in the conser-
vative vorticity form [Canuto et al., 1988]. Further-
more, we excluded the pressure through the scalar mul-
tiplication of the equation of motion by k using the
incompressibility condition k · V = 0. We should note
the following: (a) all fields are real and more efficient
modifications of Fourier transforms can be used for the
half-period, and (b) the fields have additional symmetry
with respect to the z direction and can be expanded in
sines or cosines, which further reduces the amount of
calculations (for more detail, see [Press et al., 2002]).
As additional boundary conditions in the k space, we
set T, V, B = 0 for k = 0.

For the integration over time, we used the explicit
second-order Adams–Bashford (AB2) scheme for all
terms except the diffusion term. To calculate the dissi-
pative terms, we used the known “analytical” technique
[Canuto et al., 1988]. We consider the equation

(6)

We rewrite it as

(7)

and then apply the AB2 method to the new variables

 = A  and  = U .

Below, we use the decomposition of solenoidal vec-
tor fields into the poloidal and toroidal components:

(8)

where

(9)

kx

2πnx

λ
------------, ky

2πny

λ
------------, kz

2πnz

λ
-----------,= = =

ˆ

∂A
∂t
------ k2A+ U .=

∂Aek
2γt

∂t
---------------- Uek

2γt=

Â ek
2γt Û ek

2γt

V VP VT, B+ BP BT,+= =

VP ∇ ∇ 1z f( ), VT×× ∇ 1ze( ),×= =

BP ∇ ∇ 1zh( ), BT×× ∇ 1zg( ),×= =

and f, e, h, and g are scalar potentials depending on the
radius vector r and time t. Then, we have in the wave
space 

(10)

On the strength of the orthogonality of the poloidal and
toroidal components,

(11)

it is convenient to introduce the energies related to the
components:

(12)

The Peclet, Reynolds, and magnetic Reynolds numbers
are specified as

(13)

We define the hydrodynamic helicity �� (for more
detail, see [Reshetnyak, 2006]), current helicity ��,
magnetic helicity ��, and cross-helicity �� [Branden-
burg and Subramanian, 2005] as

(14)

where A is the vector potential (B = ∇ × A). Taking into
account the boundary conditions for V and B, all helic-
ities (14) vanish at the boundaries z = 0, 1. We also
introduce the 3-D spectrum F(k) = |f(k)|2 and the energy
spectrum E(k) = k2F(k).1 

3.2. Parallelization and Tests 

The next important step is to adapt the code to the
multiprocessor technology. We used the presently most
flexible MPI method, which allows calculations to be
performed on computers of different architectures: both
on computer clusters and on multiprocessor supercom-
puters with a common bus (in particular, IBM Regatta
p69+ supercomputers). The essence of parallelization
is that the wave and physical spaces are partitioned
between the processors in one or more directions, so
that the further computations are performed on each
processor independently, with periodic data exchange

1 In a strict sense, the coefficient k2 is valid for a homogeneous iso-
tropic field.

e
i k V×( )z

k 2
----------------------, g

i k B×( )z

k 2
----------------------,= =

f
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Bz

k 2
-------.= =

EK
V2

2
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P EK
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P EM
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EK
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2

2
------, EM

T  = 
BT

2

2Ro
----------.

Pe 2EK , Re PePr 1– , Rm Peq.= = =

�� V curlV⋅〈 〉 , ��
Ro 1– B curlB⋅〈 〉 ,= =

��
Ro 1– A B⋅〈 〉 , ��

Ro 1/2– V curlB⋅〈 〉 ,= =
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between the processors. Since we used computers with
a relatively small number of processors (a few tens), we
chose 1-D partitioning in the z direction for the k space
and in the y direction for the configuration space
(details on the 2-D partitioning adjusted to Cray com-
puters can be found in [Cattaneo et al., 2003]). A non-
trivial problem is the adaptation of a 3-D fast transform
that is a sequence of three 1-D FFTs. There are two
strategies: (i) to perform two 1-D FFTs (without data
exchange between the processors) and one multipro-
cessor FFT (with data exchange) or (ii) to use two 1-D
FFTs (i.e., to perform a 2-D transform in x, y) without
data exchange; transpose the matrices, e.g., in planes
y = const, with data exchanged between the processors;
and then perform the final FFT in the z direction. In this
case, the FFT itself does not require data exchange. In
this work, we used the second strategy. An additional
processor was assigned for the synchronization of col-
lective operations and input–output operations.

The algorithm described above was written in
FORTRAN-95 and has been tested on numerous ana-
lytical examples. The following general approach was
applied in these tests. We considered an arbitrary para-
bolic equation of the form

(15)

where  is a known differential operator and X is a
vector, X = (T, V, B). Let X0 = X(t0). The value h =

(X0(x, y, z)) is then calculated analytically and the
source g = –h is added to the right-hand side of (15).
Integrating the resulting equation numerically, we

should make sure that  = 0 for an arbitrary initial

value X0 satisfying the formulation of the problem.
Note that, for such tests, it is convenient to use sym-
bolic algebra packages (for example, Maple or Mathe-
matica) that can convert analytical expressions
obtained for g into FORTRAN or C codes. This
approach greatly facilitates the search for errors, allow-
ing one to find points in space at which the divergence
from the analytical solution is greater than the accuracy
defined by the time integration scheme.

∂G
∂t
------- Ĥ X( ),=
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z Fig. 1. No-rotation regime, B = 0, with the grid N = Nx =
Ny = Nz = 64. Characteristic distributions of the fields (from

top to bottom) T + T0, Vx, Vy, and Vz for E = 10–6, Pr = 0.1,
and Ra = 1.5. The respective field ranges are (0, 1), (–123,
146), (–184, 150), and (–257, 231). Darker areas bounded
by broken lines correspond to negative values of fields.
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4. MODELING RESULTS

4.1. Thermal Convection without a Magnetic Field: 
No-Rotation Case 

The regime without rotation, both without a mag-
netic field (see the review in [Getling, 1999]) and in the
complete dynamo problem (see references in [Jones

and Roberts, 2000b; Cattaneo et al., 2003; Brandenburg
and Subramanian, 2005]), has been the subject of
numerous studies, and we focus only on some impor-
tant aspects. The onset of convection in an infinite plane
layer is a threshold phenomenon resulting from an
increase in the Rayleigh number to the critical value

Racr with nx = ny = π/ , nz = 1 [Chandrasekhar, 1961].
Figure 1 presents cross sections of fields for the devel-
oped thermal convection mode with Re ~ 5 × 103 s and
with quasi-periodic behavior of the energy with time
EK(t). The field spectra are close to the Kolmogorov
dependence (Fig. 2). The observed weak anisotropy of
the kinetic energy spectra is due to the presence of the
preferred z direction of the gravitational force.

It is noteworthy that the arising small-scale hydro-
dynamic helicity �� (Fig. 3) has a distribution close to
that observed in [Meneguzzi and Pouquet, 1989]. Since
no preferred direction exists in the case without rota-

tion, the volume-averaged helicity  is zero (for
details of the mean-field dynamo theory, see [Moffat,
1978; Krause and Rädler, 1980; Zeldovich et al.,
1983]).

4.2. Thermal Convection with Rotation 

The regime with rotation (E � 1) is typical of con-
vection in the cores of planets.2 Small values of Ra can
result in horizontal rolls rotating about the vertical axis;
however, with an increase in Ra, the role of these modes
becomes insignificant (for more detail, see [Jones and
Roberts, 2000b]), while cyclonic modes elongated
along the rotational axis z and having the diameter lc ~
E1/3 become more significant [Chandrasekhar, 1961;
Roberts, 1965; Busse, 1970]. The appearance of a small
scale in the horizontal direction leads to an increase in
Racr ~ E–1/3. Figure 4 shows the characteristic field dis-
tributions for a well-expressed geostrophic flow with a
dense distribution of cyclones and anticyclones. Rela-
tively small oscillations of the kinetic energy are
observed along with synchronous variations in the

poloidal and toroidal components (  � ).

Now we examine more closely variations in spectra
due to an increase in Ra (Fig. 5). For small Ra ~ Racr,
the kinetic energy spectrum displays a well-pro-
nounced peak at k ~ kc close to that predicted by the lin-
ear theory. The spectrum rapidly decreases at k > kc. An
increase in Ra causes the spectrum to be filled in the
region kc < E–1/3 (kc ~ 1/lc), so that the spectral ampli-
tude at small k becomes comparable with or even
higher than the amplitude at kc. Since the Earth’s liquid
core values are E ~ 10–15 and lc ~ 10–5� and only the
first ten harmonics at the surface of the core are known
from magnetic field observations, prediction of the

2  E ~ 10–15 for the Earth’s liquid core.
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k

1015

1016

1017

1018

1014

1013

1010

1011

1012

100 101 102

Fig. 2. No-rotation regime. The 3-D spectrum of the tem-
perature field fluctuation 107T2 is shown by stars, the
kinetic energy spectra fx = FK(kx, ky = kz = 1) and fy = FK(ky,
kx = kz = 1) are shown by squares, the kinetic energy spec-
trum fz = FK(kx = ky = 1, kz) is shown by a solid line, and the
averaged kinetic energy spectrum F(k) = (fx + fy + fz)/3 is
shown by solid circles. The linear plot is the Kolmogorov
spectrum F(k) ~ k–11/3(EK(k) ~ k–5/3).
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Fig. 3. Distribution of the hydrodynamic helicity �� cov-
ering the range (–9 × 105, 2 × 106).
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spectrum behavior in the range l < 0.1� is of great
importance for the general theory. The resulting pattern
is close to that inferred from calculations of the 3-D
problem of thermal convection in a sphere [Reshet-
nyak, 2006]; however, the scalings at k > kc are different
for different geometries and most probably depend on
concrete parameters (for example, on the value of Ra).

Note that the spectra depend on direction (anisot-
ropy), which is the basic distinction from the no-rota-
tion case: in both cases presented in Fig. 5, the kinetic
energy spectra in the vertical direction decrease expo-
nentially, whereas the spectra in the horizontal plane
have a maximum or a kink related to cyclonic struc-
tures and shifting toward larger scales with an
increase in Ra.

The system of cyclones and anticyclones has a
large-scale hydrodynamic helicity �� such that
��(z) > 0 at 0 < z < 0.5 and ��(z) < 0 at 0.5 < z < 1.
These relations express the law of conservation of
angular momentum for a cyclone or an anticyclone.
Most correlated are strongly geostrophic flows with
small Reynolds numbers Re (Fig. 6). An increase in Ra
leads to an effective decrease in ��. Evidently, at fixed
E, an increase in Ra would lead to an initial Kolmog-
orov pattern with a relatively low value of �� because

0
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Fig. 4. Regime with rotation (B = 0). The characteristic dis-
tributions of the fields (from top to bottom) T + T0, Vx, Vy,

and Vz for E = 3 × 10–5, Pr = 1, and Ra = 4 × 102. The respec-
tive field ranges are (0, 1), (–196, 196), (–94, 94), and
(−152, 152).
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Fig. 5. Convection with rotation (B = 0). Kinetic energy
spectra fx = FK(kx, ky = kz = 1) and fy = FK(ky, kx = kz = 1)
(curve 1) and fz = FK(kx = ky = 1, kz) (curve 2) calculated for

E = 3 × 10–5, Pr = 1, and Ra = 4 × 102; the respective spectra
for Ra = 1.2 × 103 are plotted as curves 3 and 4. Linear
dependences a and b correspond to F(k) ~ k–7 and F(k) ~
k–11/3. The vertical dashed line kc ~ E–1/3 shows the position
of the principal cyclonic mode predicted by the linear the-
ory.
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of the weak correlation between the velocity V and the
vorticity ω = ∇ × V. This decrease in correlation is
clearly observed in Fig. 7, where the helicity values are
normalized to the kinetic energy. It is also noteworthy
that, with increasing Re, the helicity tends to concen-
trate at the solid boundary and, by virtue of the specific
boundary conditions, an �� boundary layer arises at
z = 0, 1. With the exception of regions near the bound-
aries, where ��|z = 0, 1 = 0, the dependence ��(z) =
CH(0.5 – z), where CH is a constant coefficient, can be
assumed at large values of Re that are, however, still
consistent with the geostrophic approximation. Note
that, as seen from Fig. 7, the coordinates λ1 and λ2 of

the maximums of |��| for the regimes with Re1 = 260
and Re2 = 1960 are evidence for an inverse dependence:
λ1/λ2 ~ Re2/Re1 ≈ 7. Recall that the boundary layer the-
ory [Schlichting, 1968] implies that Vx ~ Vy ~ Re, Vz ~
Re1/2, and δz ~ Re–1/2� near a boundary. The latter rela-
tion is, generally speaking, consistent with our estimate
because, with an approach to the wall, the decrease in
Vz is accompanied by an increase in ωz. We obtained the
following upper-bound estimate for the helicity ampli-
tude: CH ~ Vzωz ~ Re1/2ReE–1/3 = Re3/2E–1/3. The calcu-
lations demonstrate a weaker dependence on Re: CH ~

0
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Fig. 6. Distribution of the hydrodynamic helicity �� for Ra =
4 × 102 (upper panel, the range from –7 × 105 to 7 × 105)
and for Ra = 1.2 × 103 (lower panel, the range from –2.3 ×
107 to 2.3 × 107).
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Fig. 7. Upper panel: the hydrodynamic helicity profile
��(z) for E = 3 × 10–5, Pr = 1, Ra = 4 × 102 (solid curve)
and Ra = 1.2 × 103 (dashed curve). Lower panel: the respec-
tive values normalized to the volume-averaged kinetic

energy . The curve with circles is calculated for the no-

rotation case.
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Re. We are inclined to attribute this difference to a
decrease in the correlation between V and ω. The helic-
ity of different signs generated near the boundaries is
transported by vertical flows into the bulk volume.

4.3. Dynamo 

The problem with a magnetic field qualitatively dif-
fers from the convection problem first of all because it
has a different set of conservation laws. For example, in
the inviscid approximation, the Navier–Stokes equation
for a 3-D case has two integrals of motion: the kinetic
energy EK and the hydrodynamic helicity ��. For the
problem with a magnetic field in the absence of external
forces and dissipation, the conservation law is valid for
the sum of the kinetic and magnetic energies, as is the
law of conservation of the magnetic helicity �� and the
cross-helicity �� (14). It can be shown (e.g., see [Bran-

denburg and Subramanian, 2005]) that this difference
leads to far-reaching consequences and can result in
additional inverse energy cascades across the spectrum.
Further, we examine the response of the system of
flows considered above to the application of a weak
incipient magnetic field and its increase and the transi-
tion of the system to the saturation regime.

As is known (e.g., see [Moffatt, 1978]), magnetic
field generation is a threshold phenomenon and begins
when the magnetic Reynolds number reaches a certain
critical value. If a backward effect of the magnetic field
on the flow is absent, the magnetic energy exponen-
tially increases or decreases, depending on the level of
supercriticality. This regime is called the kinematic
dynamo (KD) regime. Figure 8 shows the transition of
the system from a state of thermal convection without a
magnetic field (0 < t < t1) to the KD regime (t1 < t < t2) and
further to a nonlinear regime with high magnetic ener-
gies (t > t2). Note the abrupt increase in the squared
fluctuation of the temperature T2 during the transition
1  2. Figure 9 shows T(z) profiles with well-defined
boundary layers of a thickness ε. In spite of the overall
decrease in the energy of vertical convective motions

~ /2 due to a magnetic field, the jump in the layer
becomes greater (for more detail, see the analysis of the
Gartmann layer in [Landau and Lifshitz, 1982]).

Now we consider in greater detail the evolution of

energies with time. We have  = (8.7 ± 1.5) × 104 in
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Fig. 8. Temporal evolution of the following volume-inte-
grated values (from top to bottom): squared fluctuation of
the temperature T2, kinetic energy EK, magnetic energy EM,
and vertical magnetic dipole Dip; the curves were calculated
on the grid N = Nx = Ny = Nz = 32 for E = 10–4, Pr = 1, Ra =

6 × 102, and q = 10. An incipient magnetic field arises at the
time t1. The time t3 marks the onset of the steady-state
regime, when the magnetic energy stops increasing.
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in the boundary layer of the thickness ε increases in the
presence of the magnetic field.
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the range 0 < t < t1. As the magnetic field further
increases, the kinetic energy decreases by a factor of

0.6:  = (5.5 ± 1.4) × 104. In the saturation regime,
EK/EM ~ 1.2 and the oscillation amplitude is small: EM =
(4.6 ± 0.8) × 104. The phase 2  3 is unrelated to a
change in the large-scale component of the magnetic
field. This is indirectly supported by the stationary
amplitude of oscillations of the reversing magnetic
dipole Dip = ReBz corresponding to the harmonic with
k = (1, 1, 1) against the background of an overall
increase in EM (Fig. 8). During the transition 1  3,
the total energy of the system E = EK + EM remains con-
stant.

However, on the basis of the above analysis, it is
premature to conclude that the influence of the mag-

EK
1

netic field on the flow reduces only to a decrease in the
magnetic Reynolds number and, as a consequence, the
termination of generation. This influence is found to be
selective and substantially different for different com-
ponents of the velocity field. This inference explicitly
follows from the evolution of the toroidal and the poloi-
dal kinetic energy (Fig. 10). The observed decrease in
the total kinetic energy is due only to a change in the
toroidal (tangential) component (by a factor of 1.9),
with the poloidal (vertical) component being constant.
In other words, the magnetic field prevents the develop-
ment of small-scale cyclonic rotation. The temporal

evolution of  and  is morphologically similar.

The ratio of their averages for t > t3 is /  = 2.5.

Analysis of the curves of EK(t) and EM(t) shows that,
at the kinematic stage, some peaks correlate, whereas,
with an increase in EM, magnetic energy peaks start to
lag behind the corresponding EK peaks by one-fourth of
the period. An increase in the magnetic field suppresses
the rise in the kinetic energy, and the total energy of the
system begins to decrease. It is possible that the back-
ward effect of the magnetic field on the system arises
only if a certain critical value is reached, for example,
if the sum of the fluctuating and mean fields exceeds a
threshold value, as is the case with the Sun [Ruzmaikin,
2001].

In addition to the selective suppression of velocity
field components, differential scale-dependent suppres-
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sion of convection takes place. Figure 11 presents
energy spectra of a higher resolution for two typical
regimes without and with a magnetic field that were
examined above. The application of the magnetic field
leads to a stronger decrease in the amplitude of large-
scale modes of the velocity field, thereby suppressing
the rise in the magnetic field. On the other hand, the
kinetic energy spectrum remains constant for k > (2 to
3)kc, suggesting that the magnetic field on these scales
is force-free. Note that, at high k, the magnetic energy
is substantially greater than the kinetic energy. It is also
interesting that the maximum in the kinetic energy
spectrum is more pronounced than in the magnetic
energy spectrum, and this can have important conse-
quences for the interpretation of geomagnetic observa-
tions.

The observed decrease in the toroidal component of
the kinetic energy evidently leads to a decrease in the
hydrodynamic helicity: from the state without a mag-

netic field with  =  = (7.6 ± 1.5) × 105 to

 = (5.8 ± 1.7) × 105 for t > t3 (Fig. 10). The ratio of
helicities during the transition under consideration
coincides with the ratio of kinetic energies. In general,
the observed decrease in the kinetic energy and hydro-
dynamic helicity is not the only possible factor sup-
pressing the magnetic field generation. According to
the mean field dynamo theory, the generation of the

mean magnetic field  ~ curl(αB) depends precisely

on the total α-effect, including the contribution from
the magnetic helicity �� [Zeldovich et al., 1983; Bran-
denburg and Subramanian, 2005]:

(16)

therefore, an additional purely magnetic decrease in α
is possible via α� (here τ is the characteristic time of
vortex revolution). On the other hand, the creation of a
nonzero field �� is impossible due to the law of con-
servation of magnetic helicity; i.e., �� must be scale-
partitioned, so that the magnetic helicity will be of one
sign on some scales and of the opposite sign on others.
Such an analysis is outside the scope of this work.

5. DISCUSSION

The magnetic fields of planets are an extremely
important source of information about the processes
operating in liquid cores over times of 102–103 years
and more. Some insights into the energy spectra of the
magnetic field in upper layers of cores can be gained
from the variations in the poloidal component of the
field at the surface of the planets, whereas the analysis
of the magnetic field energy spectra in the conducting
cores themselves, as well as the kinetic energy spectra,
remains the subject of theory. Using the dynamo model

�a
� V curlV⋅

�a
�

∂B
∂t
-------

α α� α�, α�+
τ
3
---��

, α� τ
3
---��

;–= = =

in a rectangular box introduced in this paper, we exam-
ined the characteristic magnetostrophic regimes, some
dependences of kinetic energy spectra on the amplitude
of thermal sources, and implications of the presence of
a magnetic field in the system. It is interesting that, as
already noted in [Reshetnyak, 2005], the spectra can be
significantly anisotropic; typically, the field spectra in
the vertical direction monotonically decrease, while, in
the horizontal direction, they have a maximum on the
scales of geostrophic columns ~1/kc. On the other hand,
the α-effect created by these columns generates a mag-
netic field with a decreasing spectrum. At a certain time
moment, the resulting magnetic field reorganizes flows
and begins to impede the cyclonic rotation, thereby
suppressing the α-effect and stopping a further rise in
the magnetic field. This scenario describes real pro-
cesses only very approximately; this calls for a compo-
nentwise analysis of energy fluxes in the system on dif-
ferent scales, and we plan to perform this task in the
future.
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