
Numerical Methods and Programming, 2006, Vol. 7 (http://num-meth.srcc.msu.su) 85UDC 532.517:537.584SHELL MODELS IN RAPIDLY ROTATING DYNAMO SYSTEMSM. Reshetnyak1 and B. Ste�en2A typical feature of convection of rapidly rotating planets is a geostrophic state. This state is char-acterized by the following two di�erent scales: the large one along the axis of rotation and the smalltransverse one. For the liquid cores of planets, their ratio can be some orders of magnitude alreadyat the onset of convection. This phenomenon complicates simulations of convection and dynamoprocesses and requires a special analysis, essentially in the nonlinear regime. We consider the mainfeatures of the spectra for various intensities of heat sources in the existing spherical models of con-vection and geodynamo and propose a simple shell model which can mimic some properties of theoriginal dynamo system.1. Introduction.The last decade saw some fascinating progress in the modeling of the planetary dynamo,the Earth's dynamo in particular. While some years ago the main question was whether the heating from belowin the simple Boussinesq system of a rotating sphere can sustain the selfgenerating magnetic �eld, now there area variety of models which, at least at large-scales, provide a reasonable behavior of a magnetic �eld comparablewith observations [1]. As it usually happens in astrophysical bodies, the convection and the magnetic �eldgeneration take place at a very wide range of scales. So, using commonly accepted estimates of the Reynoldsnumber (Re � 109), the Prandtl number (Pr � 108) for the Earth's liquid core, for the 3D geometry oneimmediately obtains an estimate for the number of degrees of freedom of order � Re9=4 � 1020, which for sureis out of reach of any modern computer for foreseeable time. The situation with direct numerical simulations(DNS) of a magnetic �eld is not so dramatic, since Rm � 103, but even this simulation is at the level of themodern computer's capacity. So, the DNS cannot handle the desired range of parameters and one should switchto di�erent methods.Usually, in many physical and technical problems the large eddy simulations (LES) is a good choice. Thisapproach provides a description of the e�ective inuence of the �elds at subgrid scales on the large-scale �elds.There is a number of papers on this subject, starting from the rigorous renormalization group analysis [2] to thesimple but robust Prandtl and Smagorinsky models [3]. At least in principle, this approach allows one to providea dynamic (in time) inhomogeneous (in space) distribution of turbulent coe�cients for use in the original partialdi�erential equations (PDE). By now, however, practically all the papers on the geodynamo are based on theassumption that the turbulent coe�cients are constant parameters in time and space. Their particular valuesare de�ned by the numerical resolution available in the model [4]. This strange feature of geodynamo modelshas a deep background. As we know, without any exception all the planets of the solar system which have theirown magnetic �eld due to the dynamo process belong to the so-called class of rapidly rotating bodies, where theratio of the solar day �sd (�sd � 
�1, where 
 is the daily angular velocity of the body) to the typical convectivetime �c � lv (v and l are the typical velocity and scale) is extremely small (the Rossby number Ro = �sd�c � 1).From the early theoretical works of Chandrasekhar summarized in [5] it follows that in the presence ofrapid rotation the thermal convection degenerates to a quasi-two-dimensional form with small gradients of the�elds along the axis of rotation and with large gradients in the perpendicular directions. As a result, the kineticenergy maximum occurs at very small scales. For the full dynamo problem with a magnetic �eld, at least forthe moderate modi�ed Rayleigh numbers Ra (in units [6, 7] of its critical value for a given Ekman number E ),the situation is similar: the position of the maximum of the magnetic and kinetic spectra is very close to theestimate for the leading mode, so that the critical azimuthal wavenumber mcr � E�1=3 [8, 9]. On the otherhand, such a coincidence cannot be expected for the regimes where the magnetic di�usion is much stronger thanthe viscous dissipation and the magnetic spectrum is shorter than the kinetic energy spectrum, as it is believedto be in the planets.1 Institute of the Physics of the Earth, Russian Academy of Sciences, 123995 Moscow, Russian Federation;e-mail: reshetnyak@ifz.ru; Research Computing Center of Moscow State University, 119992, Moscow, RussianFederation; e-mail: rm@uipe.srcc.msu.su2 Central Institute for Applied Mathematics (ZAM) of Forshungszentrum J�ulich, D-52425, J�ulich, Germany;e-mail: b.ste�en@fz-juelich.de



86 Numerical Methods and Programming, 2006, Vol. 7 (http://num-meth.srcc.msu.su)Calculations with higher Ra, close to the ones in the Earth's core, show that the spectrum is nearly atup to mcr and then breaks. The well-known fact that the spectrum of the observed geomagnetic �eld decaysas � e�0:1m [10] gives information on the poloidal part of the �eld at the surface of the core only. At thesame time, the contribution of small scale �elds in the bulk of the core can be already quite considerable, atleast in the directions perpendicular to the rotation axis. The simple estimate of mcr for the Earth's core withE = 10�15 gives mcr � 105. This means that already at the onset of thermal convection the DNS cannotbe used. At the same time, the application of an isotropic and homogeneous semiempirical turbulence model(like Kolmogorov's one) is not suitable for the description of the geostrophic quasi-two-dimensional turbulencein the limit of E ! 0. Below we describe the dynamo equations in terms of the shell models. This approachhas been well developed for the analysis of the isotropic turbulence and provided spectral properties of thestochastic �elds for Re� 1 [11]. We propose its extension to quasi-geostrophic ows. The model developed is atoy model and can mimic only a few properties of the MHD systems: the energy exchange between the di�erentcomponents of the �elds, the transition of heat energy to the kinetic energy and then to the magnetic energy,an increase of the critical modi�ed Rayleigh number due to the rapid rotation (� E�1=3), and the at behaviorof the spectrum for m < mcr, comparable with that in geodynamo DNS.2. Basic equations and linear analysis.The geodynamo equations for an incompressible uid (r�V = 0)in a volume of scale L rotating with an angular velocity 
 in the Cartesian coordinate system (x; y; z) in itstraditional dimensionless form can be written as follows:@B@t = r� (V �B) + q�1�B;E Pr�1�@V@t + (V � r)V � = �rP � 1z � V + RaT z1z + (r�B)�B +E�V ;@T@t + (V � r)(T + T0) = �T: (1)Here the velocity V , the magnetic �eld B, the pressure P , and the typical di�usion time t are measured inthe units of �L , p2
���, ��2L2 , and L2� , respectively, where � is the thermal di�usivity, � is the density, � ispermeability, Pr = �� is the Prandtl number, E = �2
L2 is the Ekman number, � is the kinematic viscosity,� is the magnetic di�usivity, q = �� is the Roberts number, Ra = �g0�TL2
� is the modi�ed Rayleigh number,� is the coe�cient of volume expansion, �T is the unit of temperature (for more details see [4]), and g0 isthe gravitational acceleration. In the case of magnetoconvection, the modi�ed Elsasser number � appears (itdescribes the amplitude of the imposed magnetic �eld B0): � = B20���
 Pr, where the �rst multiplier is theElsasser number in its traditional form. Note that T0 describes external heating.Now we are looking for the linear solution �, V = (Ux; Uy; Uz), B = (Bx; By; Bz) with the imposedmagnetic �eld B0 = (0; 0; B0), neglecting all small quadratic nonlinear terms. The application of the curl anddouble curl operators to the Navier{Stokes equation and the curl operator to the induction equation yields:@Bz@t = @Uz@z + q�1r2Bz;@Jz@t = @Wz@z + q�1r2Jz;E Pr�1 @r2Uz@t = Er4Uz + Ra�1T � @Wz@z + �r2 @Bz@z ;E Pr�1 @Wz@t = Er2Wz + @Uz@z + � @Jz@z ;@T@t + Uz = �T; (2)where Wz = rotzV , �1 = @@x2 + @@y2 , and @T0@z = 1. By de�nition, W is the vorticity of the velocity�eld V and J = r � B is an electric current, rT0 � @T0@z = 1. The substitution of (Bz; Jz; Uz;Wz; T ) =



Numerical Methods and Programming, 2006, Vol. 7 (http://num-meth.srcc.msu.su) 87(bz; jz; uz; wz; �)et + i(kxx+ kyy + kzz) into (2) leads tobz = ikzuz � q�1k2bz; jz = ikzwz � q�1k2jz; � = uz � k2�;�E Pr�1 k2uz = E k4uz � Ra �k2 � ikzwz � �ikzk2bz; E Pr�1 wz = �E k2wz + ikzuz � i�kzjz; (3)where 2�1=2k = kx = ky � kz � 1. From the continuity condition viki = 0 (biki = 0) it follows that ux ' �uy(bx ' �by ). The relations (3) can be represented in matrix form as follows:A � (bz; jz; uz; wz; �)T = 0; (4)where A = 0BBBBBBB@ + q�1k2 0 �ikz 0 00  + q�1k2 0 �ikz 0i�kz 0 �E (Pr�1  + k2) ikzk�2 Ra0 i�kz �ikz E (Pr�1  + k2) 00 0 �1 0  + k21CCCCCCCA : (5)The main results of a dispersion analysis of (3 { 5) can be found in [12]. In the purely thermal regime withoutrotation, we have Racr � O(1) and kcr � O(1). The e�ect of rotation leads to a decrease of the transverse scales,to an increase of dissipation, and, as a result, to an increase of the critical Rayleigh number: Racr � E�1=3 andkcr � E�1=3. Depending on a value of the Prandtl number, the �rst marginal mode can be either non-oscillating(Pr > 1), or oscillating (Pr < 1) with !cr � E�2=3. The magnetic �eld in the z-direction imposed alone withoutrotation leads to the same suppression of convection: Racr � � and kcr � Ha1=3, where the Hartman number isHa = (�E�1)1=2.For the combined e�ects (rotation with an imposed magnetic �eld) and for the weak magnetic �eld state,one has Racr � E�1=3, when � < E 1=3 and kcr � Racr � O(1) for � � O(1), the so-called strong �eld regime. Alater decrease of Racr is a consequence of MHD instabilities which can occur when transition from the weak tostrong regimes takes place. This corresponds to the case where both e�ects neutralize each other. The reversescenario, when the arising small-scale turbulence damps the large-scale magnetic �eld generation, is known asthe dynamo catastrophe (see a review of the problem in [4]). From the very beginning, it is clear that suchan idealized model can only predict the possibility of instabilities, but cannot be a serious foundation for thefar-reaching conclusions on the strong nonlinear regimes of MHD systems without checking it in DNS.3. Experience from DNS. We classify results on the Boussinesq dynamo into two classes: the weakconvection regime with Ra � (1; : : : ; 10)Racr and the strongly convective regime with Ra � (102; : : : ; 103)Racr.The detailed statistics of various features of these regimes are presented in [4]. Further we will focus our attentionon the spectral properties of the �elds averaged over the bulk of the liquid core.The typical behavior of the kinetic energy spectrum for E = 10�5 without a magnetic �eld is presented inFigure 1 a. These calculations are based on the control-volume model [13] in a rotating spherical shell for theproblem (1) with a grid of 2503 points. For low Rayleigh numbers, the maximum corresponds to the criticalwavenumber mcr � 101 predicted in linear analysis. A similar picture was observed in DNS by [6] and [7] in fulldynamo models. The magnetic energy spectrum was very similar to the kinetic energy spectrum. So, as in theprevious case, the maxima of these spectra agree with the prediction of linear analysis for the purely thermalconvection. Convection at large-scales is too weak to start an e�cient magnetic �eld generation at these scalesand both maxima are localized at mcr. This is the reason why the columnar structure of ow is not stronglydisturbed by the magnetic �eld when the dynamo process is switched on.An increase of the Rayleigh number destroys the regular columnar structure of ow and leads to a atteningof the spectrum at m < mcr (Figure 1b). This phenomenon is well observed in dynamo simulations discussedin [14], where the break in both the spectra for E � 10�6 corresponds to mcr � 20. The typical form of thespectrum is presented in Figure 1 b. Below we consider the shell model technique, which helps to proceed tosmaller values of E and to longer spectra. It would not be reasonable to expect that this approach will reproduceall the details for the weak turbulent ows for moderate Rayleigh numbers; however, it is a helpful tool whenthe �elds a rescalable at the wider range of scales.4. The dynamo shell models. The idea of the shell model approach is to mimic the original partialdi�erential equations by a dynamical system with a system of ordinary di�erential equations. Usually, such anidea is implemented for the isotropic homogeneous turbulence, see review in [11]. Following the shell approach,
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~m-7a) b)Fig. 1. The Fourier spectra in the azimuthal direction at the equatorial plane of Vr-components (1) ,V�-components (2) and V'-components (3) of the velocity �eld for E = 10�5, Pr = 1 and Ra = 150 (a),Ra = 600 (b) in the large-scale spherical model. The V�-component is antisymmetric relative to the equatorplane and its amplitude is considerably smaller than the other two componentsone has to write the equations in the Fourier space, making the two assumptions: only local (in k-space)interactions occur (e.g., the mode with wavenumber k is produced by harmonics with wavenumbers k � 1 andk+1) and kn = �kn�1 (with k0 = 1), where � is a constant, usually � = 2. This logarithmic distribution of thewave vectors makes it possible to cover a very large range of scales needed in the simulations. As an example,we present the most popular GOY shell model, named after the three authors of [15, 16]:dUndt = kn��18 Un�2Un�1 � 14 Un�1Un+1 + Un+1Un+2���k2nUn (6)with n = 0; : : : ; nmax and with the cut-o� nmax � Re3=4. Since this model was developed under the assumptionof isotropy for the velocity �eld U , there is no Coriolis force in (6). In spite of the apparently simple form of(6), this model satis�es the two conservation laws of the original Navier{Stokes equation: the conservation ofthe kinetic energy E and of the hydrodynamic helicity H in the limit of vanishing viscosity �:E =Xn jUnj2; H =Xn (�1)nknjUnj2: (7)The integration of (6) in time can be done for the very large Reynolds numbers of astrophysical applications,say Re � 1010 { 1014, and gives reasonable scaling laws for turbulent ows [11].Though the decomposition of the nonlinear terms accepted in the framework of the shell models is not uniquein a strict mathematical sense, this approach was very fruitful for the modeling of the classical Kolmogorov's-liketurbulence. In this kind of turbulence, energy propagates through the spectrum in a \continuous" way: from onescale to the next closest one. For the Navier{Stokes equation and the heat ux equation in three dimensions,the energy transfer takes place from the large scales to the small ones (the direct cascade).The next crucial contribution for our modeling was made by the authors of [17, 18] who solved the Boussi-nesq problem (the Navier{Stokes equation in the form (6) but with an Archimedean force � Ra �n) and theshell equation for the temperature �. The ideas of the truncated Fourier series used in the shell models were suc-cessfully applied to the dynamo equations (the Navier{Stokes equation and the induction equation combined),see [19]. The main point of this model is to provide the conservation of the total energy (the sum of the kineticand magnetic energies) as well as the conservation of the cross helicity in the system. Using these components,the combined dynamo shell model for the isotropic homogeneous turbulence was presented in [20]. Note thatthe shell models can also be used for the description of subgrid �elds and eddy di�usion in the control-volumemodels of the large-scale thermal convection [21].However, the isotropic shell models can hardly be used for the modeling of the quasi-geostrophic (ormagnetostrophic) turbulence, which is believed to be in the liquid core [22, 23]. As follows from Section 2,the rapid rotation (as well as the strong magnetic �eld) leads to the two-dimensionalization of the ow, so



Numerical Methods and Programming, 2006, Vol. 7 (http://num-meth.srcc.msu.su) 89that the two quite di�erent scales can exist even at the threshold of magnetic �eld generation: the large scalealong the axis of rotation (or in the direction of the imposed magnetic �eld Bz) and the small scale in theperpendicular plane. There is a possibility of a third scale along the strong azimuthal magnetic �eld [22] whichwe do not consider here. This is our motivation to build a two-dimensional shell model. Such a model was �rstgiven in [24] for the thermal convection equation without a magnetic �eld. Here we will use it as a part of thefull dynamo model, so we recall some basic points. We consider an extension of the linear system (2) to thenonlinear regime, using a quasi-geostrophic approximation where it is needed. All the �elds are represented bytheir two-dimensional Fourier modes, where the second index corresponds to the z-direction along the axis ofrotation and the �rst one corresponds to the perpendicular x-direction. The corresponding wavenumbers are kzand kx. We start from the linear set of equations (3), rewrite it for the velocity and magnetic �elds (insteadof the vorticity w and the electric current j), and add nonlinear terms. The full system of equations for themagnetic �eld b (a = bx; b = bz), the velocity �eld u (u = vx; w = vz), and the temperature � are proposed inthe formdaijdt = i"kxj�u�i+1;ja�i+2;j + u�i�1;ja�i+1;j � u�i�2;ja�i�1;j2 + u�i+2 ja�i+1 j � u�i+1;ja�i�1;j2 � u�i�1;ja�i�2;j4 �+ ikzj�w�i;j+1a�i;j+2 +w�i;j�1a�i;j+1 � w�i;j�2a�i;j�12 + w�i;j+2a�i;j+1 � w�i;j+1a�i;j�12� w�i;j�1a�i;j�24 �� ikzju�ij(b�ij + b�i;j�1+ b�i;j�2 + b�i;j+1 + b�i;j+2)� q�1(k2xi + k2zj)aij ;dbijdt = i"kxj�u�i+1;jb�i+2;j + u�i�1;jb�i+1;j � u�i�2;jb�i�1;j2 + u�i+2;jb�i+1;j � u�i+1;jb�i�1;j2 � u�i�1;jb�i�2;j4 �+ ikzj�w�i;j+1b�i;j+2 + w�i;j�1b�i;j+1 � w�i;j�2b�i;j�12 +w�i;j+2b�i;j+1 � w�i;j+1b�i;j�12 � w�i;j�1b�i;j�24 �� i"kxiw�ij(a�ij + a�i�1;j + a�i�2;j + a�i+1;j + a�i+2;j)� q�1(k2xi + k2zj)bij;d�ijdt = i"kxj�u�i+1;j��i+2;j + u�i�1;j��i+1;j � u�i�2;j��i�1;j2 + u�i+2;j��i+1;j � u�i+1;j��i�1;j2 � u�i�1;j��i�2;j4 �+ ikzj�w�i;j+1��i;j+2 +w�i;j�1��i;j+1 � w�i;j�2��i;j�12 + w�i;j+2��i;j+1 � w�i;j+1��i;j�12� w�i;j�1��i;j�24 �� (k2xi + k2zj)�ij +wij;2Pr�1 E duijdt = 2Pr�1E i""kxi�u�i+1;ju�i+2;j � u�i�1;ju�i+1;j4 � u�i�2;ju�i�1;j8 �+ kzj�u�i;j�1w�ij2 + 2u�i;j+1w�ij�� "kxi�w�i�1;jw�ij2 + 2w�i+1;jw�ij�#� 2E (k2xi + k2zj)uij �wij kzjkxi � ikzja�ij(b�ij + b�i;j�2 + b�i;j�1 + b�i;j+1 + b�i;j+2);Pr�1E dwijdt = Pr�1 E i"kzj�w�i;j+1w�i j+2 � w�i;j�1w�i;j+14 � w�i;j�2w�i;j�18 �+ 2"kxi�w�i�1;ju�ij2 + 2w�i+1;ju�ij�� 2kzj�u�i;j�1u�ij2 + 2u�i;j+1u�ij�#� E (k2xi + k2zj)wi j + uij kzjkxi + Ra �ij � i"kxib�ij(a�i�2;j + a�i�1;j + a�ij + a�i+1;j + a�i+2;j):
(8)

The form of the nonlinear terms in the heat ux equation is adopted from the one-dimensional model [18]and " is 1 or E 1=3, depending on the convection regime. This form of the discrete operator provides theconservation of the heat energy � �2 in the limit of vanishing thermal di�usion. The only energy source in thissystem is described by the last term in the right-hand side of the equation.As regards to the convective and magnetic parts, we stress the following points. In both the equations



90 Numerical Methods and Programming, 2006, Vol. 7 (http://num-meth.srcc.msu.su)for the velocity and the magnetic �eld we take into account only one conservation law: the conservation ofenergy. Here we do not consider the helicity conservation and the cross helicity conservation (at least, not allthe chains in (8) provide the conservation of these integrals). This makes our model simpler and we hope totake into account these e�ects in the future. Note that at least for the three dimensional case, the spectralcharacteristics do not change much when one considers either the GOY model with the conservation of energyand helicity together, or the simpler model [25] with the only one integral, the kinetic energy. Note also thatthe helicity conservation h � vzwz in a rapidly rotating body, where both the multipliers are de�ned at verydi�erent scales, is in principle impossible in terms of the one-dimensional shell model with local interactions inthe k-space only [26].To construct shell equations for the velocity and magnetic �elds, we \uncurl" equations for wz and jz in (3)and rewrite them for the x-component of the �elds, adding the nonlinear terms and assuming that w � ikxuand j � ikxa. For the isotropic convection without the Coriolis force, we have to get two similar equations whichshould reproduce properties of the �elds similar to the one-dimensional shell model, see (8) with " = 1.
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/2a) b)Fig. 3. Spectra of the �elds for the dynamo problem (8) with Coriolis force, E = 10�10, Ra = 1:8 � 104,Pr = 0:1, q = 10�3 (a) and q = 102 (b). Squares indicate the z-spectrum and circles the x-spectrumup to � mcr with a subsequent decrease. Calculations including the Coriolis force show less stability than thenonrotating simulations, resulting in an irregular form of the spectra. Moreover, the rotation introduces itsown (short) time scale and the approximation of the Coriolis force is local in the wave space. Experiments withdi�erent approximations of the nonlinear terms show that stability gets better when the number of the productsin the chain increases. From this point of view, the e�ects of the Coriolis force should be very unstable.The at behavior of the spectra means that the di�usion in the system is estimated by � m2cr (u2; j2). Thisis the reason why the eddy viscosity should be increased by a factor of E�1=3 and can be used in LES [30].We also note that the at part of the kinetic energy spectra has far-reaching consequences for the energybudget of the whole system, since the main contribution to the dissipation in the system is of order � E 1=3u20,not � Eu20 !5. Discussion. We have considered a very important property of the rotating turbulence: the atteningof the spectra for the scales smaller than the diameter of the columns (� E 1=3). This attening is caused bynonlinear interactions. Now, simple linear analysis reveals that the growth rate � of the eigenmodes with realisticRa for the small kx � 101 is negative in the Earth's core [31]. Hence, the existing convection in this range ofscales is due only to the nonlinear terms. The DNS of purely thermal convection and of the full dynamo problemdemonstrates that already for the moderate values of Ra the kinetic energy distribution is at for m < mcrand rapidly decays for larger m. So, since in the existing DNS the molecular di�usion coe�cients are large, themagnetic spectrum obtained has a form similar to the kinetic one. To check what will happen for a small qand a kinetic energy spectrum long enough, one needs methods other than DNS, such that they help to resolvespectra with di�erent lengths. With this end in view, we used the shell models. Our modeling shows that in thiscase the magnetic �eld is generated mainly at the large scales where the microscale Reynolds number rm = unkn�is su�cient for the magnetic �eld generation. Usually, the appearance of a magnetic �eld does not change thekinetic energy spectrum. This means that our nonlinear system comes to a stable state without the instabilitiespredicted in linear analysis. However, a further thorough analysis of the above-proposed model is required.Acknowledgements.The �rst author is grateful to the Central Institute for Applied Mathematics (ZAM)of Forschungszentrum in J�ulich for hospitality. This work was supported by the INTAS Foundation (grant Â 03{51{5807) and by the Russian Foundation for Basic Research (grant Â 06{05{64619a).
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