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INTRODUCTION

The origination of a large-scale magnetic field in
celestial bodies is related to magnetic convection pro-
cesses. It is known that the magnetic field can be gener-
ated by both large-scale flows [Bullard and Gellman,
1954] and small-scale flows [Vainshtein, 1983]. In the
latter case, along with small-scale fluctuating magnetic
fields, large-scale fields arise [Vainshtein et al., 1980] (a
synergic process), which is closely connected with the
concept of the 

 

α

 

-effect in the theory of mean fields
[Krause and Rädler, 1980]. Averaging over one coordi-
nate, e.g., over the longitude, and using an additional
generation term with 

 

α

 

, the 3-D dynamo problem could
be reduced in many cases to the 2-D problem, while
preserving the validity of the limitation imposed by the
Cowling theorem, which precludes the generation of an
axisymmetric magnetic field by an axisymmetric flow.

The origin of the 

 

α

 

-effect consists in the fact that the
mirror symmetry is violated in a convective rotating
body and, as a result, the number of, e.g., clockwise
rotating eddies in the northern hemisphere is systemat-
ically greater than the number of anticlockwise rotating
ones [Krause and Rädler, 1980]. On the contrary, anti-
clockwise rotating eddies in the opposite hemisphere
dominate over clockwise rotating ones. This violation
of the mirror symmetry, resulting from the averaging of
the Maxwell equations over turbulent pulsations, gives
rise to a component of the average magnetic field 

 

B

 

 par-
allel to the average electric current 

 

J

 

 = 

 

α

 

B

 

 (whereas the
magnetic field is usually perpendicular to the current).
It is this generally small parallel component of the mag-
netic field that is capable of closing the self-excitation
circuit of the magnetic field in the Faraday phenome-
non of electromagnetic induction.

The violation itself of the reflection invariance in the
rotating turbulence is usually associated with the Cori-
olis force action on eddies moving in a medium with a
zero gradient of density [Parker, 1979]. Let the density
of the body decrease with its radius. Then, an ascending
eddy broadens, producing a velocity component
directed along the eddy radius. Accordingly, the Corio-
lis force arises due to the radial velocity and general
rotation. This force makes the eddy rotate in the sense
opposite to the general rotation. In a similar way, a
descending eddy contracts, also giving rise to a radial
velocity, and the Coriolis force makes the eddy rotate in
the same sense as the general rotation. This results in a
nonzero correlation,

 

(1)

 

i.e., the average helicity of the flow (here, 

 

v

 

 is the tur-
bulent velocity and the broken brackets mean averag-
ing). Correlation (1) determines the value of the

 

α

 

-effect (the Moffat formula):

 

(2)

 

where 

 

τ

 

H

 

 is the characteristic time of correlation. Note
that the helicity 

 

V

 

 · 

 

curl

 

V

 

 is interesting in itself, without
regard for the 

 

α

 

-effect, because it is the integral of
motion, like the kinetic energy [Kurganskii, 1993; Frik,
2003; Lesieur, 1997]. In mechanics, the original of 

 

χ

 

H

 

is the squared angular momentum [Dolzhanskii, 2001].
It is remarkable that the pseudoscalar value 

 

χ

 

H

 

 can be
estimated from symmetry considerations because a
pseudoscalar can be constructed from the density gra-
dient and angular rotation velocity (the so-called
Krause formula, see for details [Reshetnyak and
Sokolov, 2003]). This traditional interpretation of the

 

α

 

-effect is, however, of limited applicability. First of
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all, the averaged flow  often cannot be separated from

the turbulent pulsations 

 

v

 

 in applied problems.

 

1

 

 The
relationship between the helicity and 

 

α

 

-effect indicated
above has such a simple form only in the case of locally
homogeneous and isotropic turbulence. Finally, the
medium in which the magnetic field is generated is
often incompressible, so that the validity of the idea of
expanding and compressing eddies is limited. It is
worth noting that, after the 

 

α

 

-effect has been estab-
lished, the variability of density of the medium is, as a
rule, neglected in dynamo models.

The limitations noted above are particularly charac-
teristic of two very important cases of planetary and
laboratory dynamos. In the laboratory experiment car-
ried out by Frik [2003], liquid sodium used as a work-
ing medium can be considered as completely incom-
pressible. The dynamo mechanism operates in the
Earth’s outer core, consisting mostly of liquid iron and
having a density changing, according to current ideas,
by 15–20% along the radius [

 

Geomagnetism

 

, 1988].
The situation with compressibility is similar in planets
of the solar system. Moreover, the coefficient of volume
expansion in the Earth’s core is too small (~

 

2

 

 × 

 

10

 

–5

 

 K

 

–1

 

)
to generate heating-induced helicity in terms of
Parker’s model.

However, even the first 3-D models of the geody-
namo in the Boussinesq approximation had regimes
with nonzero large-scale helicity [Glatzmaier and Rob-
erts, 1995]. Below, we consider possible mechanisms
of the helicity generation in such systems and compare
our results with known models of the solar dynamo, in
which the generation mechanisms of the 

 

α

 

-effect have
been discussed for many years [Krivodubskii, 1984;

 

R

 

ü

 

diger

 

 and Kitchatinov, 1993].

EQUATIONS OF THE GEODYNAMO

 

Formulation of the Problem 

 

We consider the geodynamo equations for an
incompressible liquid (

 

∇

 

 · 

 

V

 

 = 0) in a spherical layer
(

 

r

 

i

 

 

 

≤

 

 

 

r

 

 

 

≤

 

 

 

r

 

0

 

) rotating about the 

 

z

 

 axis at an angular veloc-
ity 

 

Ω

 

 in a spherical coordinate system (

 

r

 

, 

 

θ

 

, 

 

ϕ

 

). We
introduce the following units of measurement for the
velocity 

 

V

 

, time 

 

t

 

, pressure 

 

P

 

, and magnetic field 

 

B

 

: 

 

κ

 

/

 

L

 

,

 

L

 

2

 

/

 

κ

 

, 

 

ρκ

 

2

 

/

 

L

 

2

 

, and 

 

2

 

Ωρκµ

 

0

 

, where 

 

L

 

 is the length unit,

 

κ

 

 is the molecular heat conductivity coefficient, 

 

ρ

 

 is the
density, and 

 

µ

 

0

 

 is the magnetic constant; then, we have

 

1

 

Many geo- and astrophysical problems are characterized by con-
tinuous velocity field spectra and do not make the separation into
large and small scales used in the dynamics of average fields.

V

∂B
∂t
------- curl V B×( ) q 1– ∆B+=

 

(3)

 

The dimensionless numbers of Prandtl, Ekman, Ray-

leigh, and Roberts are written as Pr = 

 

, 

 

E

 

 = 

 

,

Ra = , and 

 

q

 

 = 

 

, where 

 

ν

 

 is the kinematic vis-

cosity coefficient, 

 

α

 

 is the coefficient of volume expan-
sion, 

 

g

 

0

 

 is the gravity acceleration, 

 

δ

 

T

 

 is the unit pertur-
bation of the temperature 

 

T

 

 relative to the equilibrium
profile 

 

T

 

0

 

,

 

 and 

 

η

 

 is the magnetic diffusion coefficient.
The Rossby number is defined as Ro = 

 

E

 

Pr

 

–1

 

.

Problem (3) becomes fully defined by introducing
boundary conditions at 

 

r

 

 = 

 

r

 

i

 

, 

 

r

 

0

 

. Zero boundary condi-
tions are used for the temperature perturbations 

 

T

 

,

 

 and,
in conjunction with the profile 

 

T

 

0

 

 specified above, this
corresponds to fixed values of the total temperature

 

T

 

0

 

 + 

 

T: (1, 0). Note that variation in spherically sym-
metric boundary conditions for T (e.g., fixed tempera-
ture or heat flux at boundaries or various forms of heat
source distribution in the core) affects weakly the gen-
erated magnetic field beginning from the onset of
developed convection [Sarson et al., 1997; Reshetnyak
and Steffen, 2005] but can dramatically change the
regime of geomagnetic field reversals in the presence of
inhomogeneities of the heat flux at the core–mantle
boundary ranging within a few tens of percent [Glatz-
maier et al., 1999]. Therefore, without loss of general-
ity in what follows, we accept the condition of the first

kind with fixed temperatures: T0 =  at r0 = 1.

The impermeability condition Vr = 0 is accepted for
the velocity field. The tangential velocity components
Vθ and Vϕ are subjected to the no-slip conditions Vθ = 0
and Vϕ = 0 at the boundaries r = ri and r0 (the rigid core
in some models can rotate about the z axis) [Glatzmaier
and Roberts, 1995], which is typical of rigid bound-
aries; an alternative to these boundary conditions for
the tangential velocity components is the vanishing of
tangential stresses  at these boundaries: τrθ, τrϕ = 0
[Kuang and Bloxham, 1997; Tilgner and Busse, 1997].
Boundary conditions of these types are used in models
of convection in stars with a free boundary [Chan-
drasekhar, 1981] (exact expressions for  in various
coordinate systems can be found in [Landau and Lif-
shitz, 1975]). Such a type of boundary conditions,
somewhat strange for the Earth’s core, is related to the
following. It is known that, in the first case, the gener-
ated magnetic field concentrates near rigid boundaries

EPr 1– ∂V
∂t
------- V ∇⋅( )V+

=  curlB B ∇P– 1z V RaTr1r E∆V+ +×–×

∂T
∂t
------ V ∇⋅( ) T T0+( )+ ∆T .=

ν
κ
--- ν

2ΩL2
-------------

αg0δTL
2Ωκ

------------------- η
κ
---

ri/r 1–
1 ri–

-----------------

τ↔

τ↔
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(see the comparison with a nonviscous model in
[Kuang and Bloxham, 1997]) and can be largely con-
trolled by processes in Ekman layers, in which intense
shear flows exist and a nonzero helicity flux is present
at the rigid boundary. Given realistic values of the
Ekman number E ~ 10–15, the thickness profile the
Ekman layer is δE = E1/2L ~ 10–1 m, i.e., too small to
account for the existing large-scale (dipole) magnetic
field of the Earth. The use of the turbulent value of the
viscosity coefficient does not basically change the situ-
ation: in this case, ET ~ 10–9 and the layer density is

 ~ 100 m, which is still at the resolution threshold of
modern computers. Another possibility is the use of
nonviscous conditions. In this case, the magnetic field
is generated in the main volume of the liquid core. In
both cases, the magnetic field generated in the models
has features at the Earth’s surface similar to those
observed by archaeo- and paleomagnetologists [Geo-
magnetism, 1988]. Below, we apply in our calculations
the second type of boundary conditions in order to
remove boundary effects. Vacuum boundary conditions
at the outer boundary r0 are used for the magnetic field
(their numerical finite-difference implementation is
described in [Hejda and Reshetnyak, 2000]).

To solve system (3) numerically, the method of control
volume [Patankar, 1980; Hejda and Reshetnyak, 2003,
2004] was used and equations were solved in original
physical variables on a 100 × 100 × 120 grid. PC clusters
and IBM SP 690+ supercomputers were used to
solve the problem (methods of using parallel proces-
sors are described in detail in [Reshetnyak and Stef-
fen, 2005]).

Modeling Results 

We consider the behavior of system (3) in the
absence of a magnetic field (B = 0). An increase in the
Rayleigh number Ra leads to convective instability in

δE
T

the form of vertical rolls [Roberts, 1965; Busse, 1970;
Boubnov and Golitsyn, 1995] in distinction to hexahe-
dra observed in an incompressible liquid (see the
review in [Getling, 1999]). The rolls are known to
decrease in diameter (by the law ~E1/3) with increasing
rotation velocity of a sphere Ω. The realistic values of
the Ekman number in the Earth being E ~ 10–15, the
azimuthal wave number mcr at the convection genera-
tion threshold (Ra = Racr) is estimated at ~105 [Jones,
2000], which is beyond the possibilities of modern
numerical analysis and requires special models of tur-
bulence [Reshetnyak and Steffen, 2004]. The situation
becomes even more complicated if real values of the
Rayleigh number (Ra ~ 500 Racr [Jones, 2000])2 are
used.

Figure 1 presents characteristic cross sections of
velocity components demonstrating the formation of
vertical rolls at Ra = 100 and Racr ~ 13. A further
increase in the Rayleigh number not only decreases the
scale (Fig. 2) but also gives rise to a large-scale velocity
component with wave numbers n < mcr well seen in the
field spectra (Fig. 3). Note that the widely accepted idea
of an (albeit weak) attenuation of the poloidal magnetic
field at the surface of the liquid core ~e–0.1n [Lowes,
1974] by no means implies (a) an attenuation of the
spectrum of the entire magnetic field (including the tor-
oidal component) throughout the liquid core volume or
(b) an attenuation of the spectrum of kinetic energy (in
the Earth, we have η/ν = 106 and the kinetic energy
spectrum is much more extended than the magnetic
energy spectrum). In the absence of superviscosity
effects,3 a maximum in the kinetic energy spectrum is

2 The Rayleigh number in the liquid core was estimated from the
balance of the buoyancy and Coriolis forces. 

3 In the model of Glatzmaier and Roberts [1995], the coefficient of
turbulent viscosity depends on the spectral number n as νT = ν(1 +
0.075n3).

Fig. 1. Results of calculations with E = 10–4, Pr = 1, and Ra = 102. The panels from left to right: the meridional cross sections of
the nonaxisymmetric velocity components Vr (–4.0, 16.9), Vθ (–28.2, 28.4), and Vϕ (–33.6, 38.6) and the equatorial cross section
of the nonaxisymmetric velocity component Vr (–23.9, 17.3). The numbers in parentheses bound the ranges of values of the com-
ponents.
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well observed in several dynamo models both with
small Ra ~ 10 Racr [Kutzner and Cristensen, 2002; Sim-
itev, 2004] and with developed convection with Ra �
Racr [Roberts and Glatzmaier, 2000].

The broadening of the region of convection wave
numbers is related to both linear effects (the number of
modes increases at Ra > Racr) and the backward energy
transfer along the spectrum. The latter phenomenon is
well consistent with the results of linear analysis (with-
out nonlinear terms), according to which the Rayleigh
numbers should be much greater than the generally
accepted estimates Ra ~ 500 Racr in order to excite con-
vection in the liquid core comparable in scale to the
core itself [Reshetnyak, 2005b].

A characteristic feature of the two regimes consid-
ered above is the separation of the liquid core into two
regions (for details and literature, see [Jones, 2000]):
region I above (under) the rigid core bounded by the
Taylor cylinder (TC) (the TC walls correspond to Stu-
artson layers) and region II outside the TC (Fig. 1).
Given the excitation threshold Ra = Racr and moderate
Rayleigh numbers (Fig. 1), convection develops in
region II and is virtually absent in region I, but a rise in
the amplitude of heat sources (Fig. 2) shifts the convec-
tion intensity maximum into region II. However, these
regions are well resolved in both cases.

As noted above, helicity (1) is generated in models
with an incompressible liquid (e.g., see [Glatzmaier
and Roberts, 1995], and references to many publica-
tions can be found in [Simitev, 2004]). Distributions of
the hydrodynamic helicity χH averaged over time and
the azimuthal coordinate ϕ are presented in Fig. 5 for
the aforementioned two excitation regimes I and II.
Below, we discuss the mechanisms of helicity genera-
tion and compare the inferred results with data of other
studies.

HELICITY GENERATION

Helicity Models 

Presently, several mechanisms of helicity genera-
tion are known. Before discussing the most widespread
mechanisms, we should mention the possible genera-
tion of helicity due to reflection of Alfvén waves from
rigid boundaries [Moffat, 1978; Anufriev, 1991]. This
model once served as a basis for a special choice of the
form of the α-effect in the geodynamo Z model [Bra-
ginsky and Roberts, 1987; Cupal and Hejda, 1992]. In
terms of this model, the transition from the α-effect of
the form α = α0cosθ that is classical in the star dynamo
[Zeldovich et al., 1983] to the α-effect concentrated at
the core–mantle boundary was instrumental in passing
from the regime of traveling waves of the solar type to
a stable dipole magnetic field such that, in the main vol-
ume of the liquid core, the field is directed along the
rotation axis z, which gave the name to the Braginsky
model.

Note also the possible generation of the α-effect by
shear flows, for example, in surface Ekman layer of the
atmosphere [Chkhetiani, 2001]. However, it is evident
that the description of helicity and the α-effect in terms
of other, volume models is preferable for the modeling
of large-scale magnetic fields.

On the whole, the ideas of developing volume mod-
els of helicity are based on the construction of a pseu-
doscalar value obtained from the scalar product of the
ordinary (G) and axial (w) vectors. The Parker model
[Parker, 1979], described above and the most popular in
astrophysics, relates G to a large-scale gradient of den-
sity and uses the vorticity w = curlv as the second vec-
tor. However, this model cannot describe all possible
situations. Thus, in the presence of strong magnetic
fields, one should take into account the back effect of a
large-scale magnetic field, tending to suppress arising
small-scale flows. Then, in contrast to the hydrody-

Fig. 2. Results of calculations with E = 10–4, Pr = 1, and Ra = 5 × 102. The panels from left to right: the meridional cross sections
of the velocity components Vr (–46.5, 104.6), Vθ (–111.1, 72.1), and Vϕ (–132.4, 136.8) and the equatorial cross section of the
nonaxisymmetric velocity component Vr (–129.6, 128.0). The numbers in parentheses bound the ranges of values of the compo-
nents.
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namic (in the given case, gyrotropic) helicity, there
arises the magnetic helicity χM, which decreases the
total helicity χΣ = χH + χM, so that |χΣ| � |χH| + |χM|. The
related suppression mechanism is described in [Vainsh-
tein and Vainshtein, 1973; Krause and Rädler, 1980;
Zeldovich et al., 1983], and the evolutionary equation
for χM is presented in [Kleeorin et al., 2000]. Estimates
of the helicity suppression in the Earth’s liquid core are
given in [Reshetnyak and Sokolov, 2003].

Although the Parker model was initially developed
specially for the solar dynamo [Parker, 1979], subse-
quent observations of helioseismology (see the history
of the problem in [Rüdiger and Kitchatinov, 1997]) pro-
vided additional constraints on the distribution of the
helicity χH in the convective zone of the Sun: the helic-
ity should change its sign along the radius (χH < 0 for
large r and χH > 0 in the lower part of the convective
zone), which is obviously at variance with an ascending
and expanding eddy; this required a modification of
numerical models [Yoshimura, 1975]. Moreover, the
hypothesis on a compressible liquid in the lower part of
the convective zone is inconsistent with modern ideas
of the structure of the Sun.

Another scenario of the generation of helicity and
the α effect proposed in [Krivodubskii, 1984; Rüdiger
and Kitchatinov, 1993] was successfully applied in
studies of the solar dynamo. According to this model,
the α effect is determined by the kinetic energy gradient
∇EK rather than the density gradient. Formally, this is a
consequence of the fact that a pseudoscalar can be con-

structed from ∇EK and the angular velocity vector .
This mechanism is interesting if only because spatial
inhomogeneity of the kinetic energy (in both experi-
ments and astrophysical bodies) is observed much more
often than spatial inhomogeneity of density. It is worth
noting that, in the case of an extremely fast rotation (Ω
→ ∞), the existence of α ≠ 0 can be substantiated not-
withstanding the tendency of turbulence toward a 2-D
pattern [Rüdiger, 1978].

These ideas of the generation of large-scale mag-
netic fields by small-scale turbulence in an incompress-
ible liquid do not contradict the well-known theoretical
geodynamo results [Glatzmaier and Roberts, 1995].
Below, we demonstrate the formation of the α-effect in
a rotating body with variable kinetic energy using, as an
example, numerical models in the Boussinesq approxi-
mation.

Sources of Helicity 
in an Incompressible Liquid 

Before analyzing more complex helicity models, we
consider possible mechanisms of the χH generation by
the Coriolis force at a qualitative level [Vainshtein

Ω

et al., 1980]. In a linear regime (small |V|), at 1Ω = 1z,

the relation  ~ –Ro–11z × V yields

(4)

Historically, only the second term was initially taken
into account, which is characteristic of gaseous bodies
with high density gradients and a homogeneous distri-
bution of kinetic energy. The continuity condition
div(Vρ) = 0 yields divV = –V · G, where G = ∇ ,
and the helicity contribution of the second term
amounts to –Ro–1 (G · 1z). Evidently, with increasing
rotation velocity, Ro → 0 and the helicity increases.
This mechanism describes well the generation of the
α-effect in galaxies, where |G| > 1 [Zeldovich et al.,
1983].

However, even in models of the solar dynamo
[Krivodubskii, 1984; Rüdiger and Kitchatinov, 1993],
the change in the helicity sign in the lower part of the
convective zone could not be accounted for without
invoking the helicity generation due to the spatial inho-
mogeneity of velocity field pulsations. In the general
case, the expressions for the α-effect in the Sun have
the form α ~ ∇ln(v⊥ρ), where v⊥ is the velocity pulsa-

tion component perpendicular to the rotation axis.4 
It is evident that the contribution of the first term can

be fairly large in the planetary dynamo, where the mag-
netic field is generated in a weakly compressible
medium. Thus, the contribution of the first term in (4)
to the helicity generation can already be comparable
with that of the second term in the Earth’s core, whose
composition is accounted for by 95% molten iron and
whose density varies on the core scale by |G| ~ 0.2 [Bra-
ginsky and Roberts, 1995].

As regards the third term in (4), a more detailed
analysis of flow patterns shows that the product vzcurlzv
gives the largest contribution to the helicity and,
accordingly, the third term can be neglected.

Regimes of Small Ra 

Convection at the excitation threshold and compar-
atively small Rayleigh numbers (Ra ~ 10 Racr) was
studied in detail by Busse (see the review in [Simitev,
2004]). The convection concentrates in vertical rolls in
region II and is weak in region I. In this case, the so-
called weak dynamo is realized, when time-averaged
magnetic and kinetic energies have the same order of
magnitude.

We consider the widely used flow type independent
of z (with divv = 0) [Tilgner, 1997; Jones, 2000].

4 Since the value of turbulent pulsations in the lower convective
zone of the Sun is larger compared to the overlying region and the
heat exchange is convective, rather than radiative, χH changes its
sign to the opposite.

∂V
∂t
-------

∂
∂t
----- V curlV⋅( ) Ro 1– ∂Ek

∂z
--------- VzdivV– curlV V×[ ]z+⎝ ⎠

⎛ ⎞ .∼

ρlog
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Below, we note the stage at which the z dependence of
flows becomes necessary. A roll-like flow arising in the
northern hemisphere can be written by the formula

(5)

The helicity of such a flow is always negative:

(6)

According to properties of the equatorial symmetry of
flows (Fig. 1), we have in the southern hemisphere (z < 0)
curlv(–z) = curlv(z) and vz(–z) = –vz(z) (for details, see
[Busse, 1970]). This leads to a sign change at the equa-
tor: χH(–z) = –χH(z). This flow is geostrophic. However,
the balance alone between the pressure and the Coriolis
force is insufficient for actual realization of the Busse
rolls; the latter requires additionally the incorporation
of the next terms in the expansion in powers of the
Ekman number [Busse, 1970], accounting for the buoy-
ancy forces and the z dependence of fields. One of the
conditions following from the asymptotic analysis of
such flows is the existence of finite gradients along the
z axis, |kx| ~ |ky| � |kz| ≠ 0, where ki is a wave number
(e.g., see [Reshetnyak, 2005b]), i.e., a departure from
geostrophy. With reference to a problem in a sphere,
this means the influence of boundary conditions on the
velocity field (Fig. 1). This statement can easily be
understood, considering one of the three relations used
in the linear analysis of equations, namely, the relation
corresponding to the z component of the curl of the

v v x v y v z, ,( ) 2 πx( ) πy( ),cossin(= =

2 πx( ) πy( )sincos , 2 πx( ) πy( ) ).sinsin––

χH 2 2π πx( )2 πy( )2cossin–=

– 2 2π πx( )2 πy( )2 4 2π πx( )2 πy( )2 .sinsin–sincos

Navier–Stokes equations: Ro curlz  = vz +

E∆curlzv. The system is split at kz = 0, and the z compo-
nent of the vorticity attenuates (the condition of col-
linearity of the vectors 1z and 1W is inessential). The
presence of finite gradients in z on the main scale L is
necessary for the origination of rolls. The departure
from geostrophism leads to nonvanishing gradients of
kinetic energy, which corresponds to the first term in
(4). The latter is a necessary (but not sufficient) condi-
tion for the generation of χH. The generation of large-
scale helicity is critically dependent on the relationship
between the phases of vz and wz, as is evident even from
the fact that, making the replacement vz = –vz in (5), we
obtain χ → –χ. Given a layer infinite in z in the k-space,
we have at the excitation threshold for the neutral mode

[Reshetnyak, 2005b]: hc = wz = |vz|2.

Then, we obtain χ = �hc = , where ω =

–i v/v is the imaginary part of the growth rate. Since

the analysis of variance implies that two solutions with
±k exist for a certain value of ω (waves traveling in
opposite directions), both positive (kz > 0) and negative
(kz < 0) helicity can be generated. The total helicity van-
ishes, as is the case with the Alfvén waves in an infinite
layer [Moffat, 1978].

The generation of nonzero helicity χH can be related
to two effects [Busse, 1975, 1976]. These are the
Ekman layers and the inclination of the layer boundary,
changing the height of rolls. In the first case, a nonzero

v̇
∂
∂z
-----

v z*
ikz

E Pr 1– σ k2+( )
---------------------------------

2Prωkz

E ω2 k 4Pr2+( )
-------------------------------------

∂
∂t
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Fig. 3. Fourier spectra of the ϕ-components of the velocity in the azimuthal direction for two regimes (Fig. 1): (1) Vr; (2) Vθ; (3) Vϕ.
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normal component of the velocity ~E1/2 arises at the
boundary of the Ekman layer, generating helicity
(~E1/2). In the northern hemisphere, the helicity is pos-
itive at the outer boundary of the core and negative at
the inner core boundary. The spatial scale of the helicity
in the direction normal to the boundary is comparable
to the thickness of the Ekman layer δE ~ E1/2. This case
is of no interest for the geodynamo theory.

The second case is more interesting. It was shown
that, using the decomposition in the height of rolls
depending on the distance from the rotation axis, an
increase or decrease in the roll height changes the helic-
ity sign. The effect is associated with Rossby waves
shifting the rolls in the radial direction, and this move-
ment gives rise to their additional twisting (for more
details, see [Busse, 2002]). This effect was usually con-
sidered in the outer part (II) of the core, where the roll
height increases with decreasing distance from the s
axis. We think that precisely this phenomenon is
responsible for the generation of the helicity χ inferred
in [Kageyama and Sato, 1997] and from our calcula-
tions at small Rayleigh numbers (Fig. 4). The effect of
boundaries leads to a negative correlation between vz

and wz. Unlike atmospheric cyclones and anticyclones
characterized by a positive correlation, the effect of
boundaries yields an opposite helicity sign for region II.
It is also worth noting that a decrease in the Prandtl
number Pr → 0, shifting rolls into the equatorial zone
(large s) [Zhang, 1993], can lead to a similar shift of χH

into the equator area. However, this effect is of no sig-
nificance for the Earth’s core because, in models of
both thermal convection (Pr ~ 0.1) and concentration
convection (Pr ~ 10), the resulting displacement is
small, particularly, at large Reynolds numbers Re (Re =

 ~ 109 in the Earth). The values of the turbulent

Prandtl number PrT are ~O(1) in both cases.

Moffat Estimates 

Before analyzing the regime of vigorous convec-
tion, we consider some interesting consequences of the
Moffat estimates with reference to the small-Ra con-
vection model discussed above. Throughout this sec-
tion, we assume that the distribution of the Busse rolls
is homogeneous in the plane (x, y), perpendicular to the
rotation axis z, and the fields do not vary along this
axis.5 

We decompose the velocity field into the longitudi-
nal component along the z axis and a transverse compo-
nent in the plane (x, y):

(7)

5 The statistical homogeneity of a flow in the plane (x, y) corre-
sponds to rather large values of Ra, so that rolls fill a spatial
region much greater in size than their diameter.

VL
ν

-------

V V|| V⊥, V||+ 1zVz.= =

Then, due to the homogeneity of the roll distribution in
the plane (x, y), the expression for the mean helicity
takes the form [Moffat, 1978]

(8)
�H V curlV⋅〈 〉 V⊥ curlV⊥⋅〈 〉= =

+ 2 V|| curlV⊥⋅〈 〉 .

I

II II

I

Ω

z

Fig. 4. Meridional cross section of the axisymmetric com-
ponent of the helicity χH for the Rayleigh numbers Ra = 102

(–6.9 × 105, 6.9 × 105) in the left panel and Ra = 5 × 102

(–3.1 × 107, 3.0 × 107) in the right panel.

Fig. 5. The sense of the meridional circulation is shown in
the upper part of the figure and the angular velocity of the
liquid rotation Vϕ/s is shown in the lower part. 
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The second term (Vzwz ≡ V||curlV⊥) is already consid-
ered above. The first term in (8) can be estimated from
the balance of the buoyancy Coriolis forces in (3):

(9)

After applying the curl operation to (9), multiplying the
result by 1z × V, and taking into consideration (7) (for
details, see [Moffat, 1978]), we obtain an estimate for
the first term in (8):

(10)

As before, we see that the dependence on z is necessary
for the helicity generation. Note also that the limiting
transition from the periodic flow considered above to a
random flow and Moffat estimates (10) can be made
only accurate to coefficients of the order of unity (Zel-
dovich [1984] describes in more detail a similar case of
estimating the coefficients of turbulent diffusion for
random and periodic flows).

Regimes of Large Ra 

At large Ra, the roll mechanism of heat transfer in
region II becomes insufficient and convection moves
into region I, where flows driven by the buoyancy
forces are parallel to the rotation axis and the Coriolis
force hinders to a lesser extent the motion and the heat
transport from the hotter rigid core to the outer bound-
ary. Overall, the mean temperature in region I is higher
(T > 0) than in region II; however, along with the mean
ascending flow, the roll structure is also present in this
region. Accurate estimates of the axisymmetric and
asymmetric components can be found in [Glatzmaier
and Roberts, 1995], but their ratio can depend strongly
on the superviscosity model in use [Zhang and Jones,
1997].

Modeling at large Ra ~ 103 Racr being complicated
by the development of numerical instabilities, earlier
studies of the 3-D dynamo included artificial suppres-
sion of high frequencies with the use of a superviscosity
[Glatzmaier and Roberts, 1995; Kuang and Bloxham,
1997]. In the case of a vanishing relative velocity at the
boundary of the liquid core, a change in the helicity
sign in region I is observed with increasing r: in the
northern hemisphere, the helicity sign is positive in the
lower part and negative in the upper part. This is the
basic distinction from the small-Ra case considered
above, in which the helicity χH does not change its sign
throughout the hemisphere. Maximums of |χH| are close
to rigid boundaries. It is also known that, in the model
of Glatzmaier and Roberts [1995], the axisymmetric
component accounts for 80% of the total velocity field
and the angular velocity changes its sign in the TC:
Vϕ(z)/s > 0 (s = rsinθ) in the lower part and <0 in the
upper part (Fig. 5).

Now, we compare results of these calculations with
the vertical variation in the kinetic energy. In a plane

1z V× ∇p– RaT1z.+=

V⊥ curlV⊥⋅〈 〉 Ra– T
∂Vz

∂z
-------- .=

layer (1z ≡ 1W), the application of the curl operation to
(9) and the scalar multiplication by V yield

(11)

Assuming the axial symmetry and writing out the right-
hand side of (11) in the spherical system of coordinates
(s, ϕ, z), we obtain (∇sT, 0, ∇zT) · (–Vϕ, Vs, 0) = –Vϕ∇sT,
where ∇sT is the so-called Archimedes wind. Estimate
(11) does not contradict the numerical results reported
in [Glatzmaier and Roberts, 1995] because the temper-
ature in region I rises toward the axis, ∇sT < 0, and the
Coriolis force hinders to a lesser extent the motion and
the heat transfer from the hotter rigid core toward the

outer core boundary and the sign change in Ek is

determined by the inversion of the azimuthal velocity
Vϕ(z) (see Fig. 5; in the case of a fast rotation, the azi-
muthal velocity component usually has a maximum
energy). As noted above, a kinetic energy varying along
the z coordinate is necessary for the generation of helic-
ity. The following scenario is possible: if region I is hot-
ter than region II, the average of the component of Vz is
positive (in the northern hemisphere). This corresponds
to the flow of the liquid into the lower part of the TC
(and away from its upper part) through the Ekman layer
and the TC walls. The latter implies the introduction of
a positive (negative) torque and, as a result, a positive
(negative) torsion in the lower (upper) part of the TC, as
is observed in Fig. 5. However, two problems arise in
this case. These are the questions of why a positive
helicity is not observed near the equator at small Ra and
why, for the Ekman numbers considered here, the helic-
ity has a scale much smaller than the observed scale.

To narrow the range of possible situations, we
address thermal convection with large Rayleigh num-
bers (Ra = 500) and nonviscous boundary conditions.
As noted above, an increase in Ra shifts convection into
the TC (Figs. 1, 2). Although the use of nonviscous
boundary conditions resulted in a sign-constant angular
velocity of the TC liquid, which was observed in
[Glatzmaier and Roberts, 1995] but was not observed in
[Kuang and Bloxham, 1997], the helicity distribution
remained qualitatively the same (Fig. 4): the TC value
of χH changes its sign in the vertical direction. The
numerical experiments discussed above demonstrate
that the elimination of the axisymmetric component of
the velocity V changes insignificantly (by ~15%) the ϕ-
averaged helicity χH. The termwise analysis of the
expression for χH

(12)

∂
∂z
-----Ek Ra∇T 1z V⋅( ).⋅=

∂
∂z
-----

χH Vr

r θsin
------------- ∂

∂θ
------ Vϕ θsin( )

∂Vθ

∂ϕ
---------–⎝ ⎠

⎛ ⎞=

+
Vθ

r
------ 1

θsin
-----------

∂Vr

∂ϕ
-------- ∂

∂r
----- rVϕ( )–⎝ ⎠

⎛ ⎞ Vϕ

r
------ ∂

∂r
----- rVθ( )

∂Vr

∂θ
--------–⎝ ⎠
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in this model shows that the first of the three terms in
(12) makes the greatest contribution to the formation of
two χH structures of opposite signs in the TC; i.e., as in
the cases of small Ra considered above, we deal with a
nonzero correlation of small-scale cyclonic flows
resulting in a large-scale effect but with a smaller scale
along the z axis: χH changes its sign. As seen from Fig. 2,
eddies in the lower and upper regions of the northern
hemisphere rotate in opposite senses, but the direction
of the vertical velocity component remains the same all
along one roll.

Since the calculations were performed for nonvis-
cous boundary conditions, we think that the positive
helicity arises at the boundary of the rigid core due to
the variation in the roll height associated with the
boundary curvature [Busse, 1975]: with an increase in
the distance from the z axis caused by the Rossby
waves, the roll height increases, which corresponds to
the positive sign of the helicity near the rigid core. The
spatial scale of the distributions of positive and negative
helicities is ~(r0 – ri)/2 (Fig. 4).

DISCUSSION

Apparently, direct numerical modeling fails to pro-
vide regimes with E ~ 10–15 and Ra ~ 500E–1/3 = 5 × 107

and one can only hope that the model results already
belong to the asymptotic regime E  0, Ra/Racr =
const. However, the fact that the effect of the helicity
formation described above depends only on the tilt of
the boundary and is independent of E, makes the given
mechanism attractive for modeling the helicity at real-
istic values of parameters.

The helicity generation mechanisms considered
above can exist in the Earth’s liquid core along with the
traditional mechanism proposed by Parker [1979] (see
also [Shimizu and Loper, 2000]). The concurrent oper-
ation of both mechanisms leads to an increase in the
helicity near the outer boundary and they weaken each
other near the rigid core; i.e., they operate in an
antiphase mode. Since the helicity in both mechanisms
is antisymmetric with respect to the equatorial plane,
the total helicity also possesses this property.

It is also worth noting that the form of the α-effect,
concentrated near the core–mantle boundary in the Bra-
ginsky Z model and observed in our study in the TC,
can be interpreted in terms of not only the reflection of
Alfvén waves from a rigid boundary but also purely
hydrodynamic processes near rigid boundaries. How-
ever, in this case, the model should be complemented
by helicity of an opposite sign near the boundary of the
rigid core (note that initially the Z model was devoid of
a rigid core). The ideas of sources of α- and Ω-effects
concentrated in different spatial regions were also
applied in studies of the solar dynamo [Stix, 1971].

As regards the formal similarity between the
inferred dependences and solar dynamo models, we
should note that the existence of the kinetic energy gra-

dient alone is insufficient for the realization of large-
scale helicity. This condition is necessary for the forma-
tion of the roll flow structure, but the correlation of vor-
ticity with the vertical velocity component requires
additional conditions, in particular, an inclination of the
volume boundaries.

Above, we did not touch on the problem of calculat-
ing the α-effect (2). Practical use of the above helicity
estimates in large-scale dynamo models (such as the
dynamo of mean fields [Krause and Rädler, 1980])
requires information on the spectra of the fields V and B.
Using the simplest estimate for the mixing length, we
have τH = l/v, i.e., α ~ –v/3. Assuming the spectrum of
the velocity field to be a white noise, vn = const = Vwd,
we obtain that the magnetic Reynolds number rm =
v/(nη) on a scale of 1/n is ~1 even for a scale of 10–3L,
so that the turbulence-driven generation of the mag-
netic field is ineffective. The latter imposes a constraint
on the maximum number of rolls: nmax ~ 103 [Jones,
2000]. In the case of turbulence involving a cascade of
rolls of different diameters, this constraint agrees with
the estimate of the energy-carrying scale for the term
curl(αB) in the induction equation. The resulting ampli-
tude of the α-effect (~Vwd/3) and the related value of the

dynamo number Rα =  used in the αω-dynamo

models are comparable to estimates derived in [Anu-
friev et al., 1997]. The use of models with a decreasing
spectrum (vn ~ n–γ), i.e., the Kolmogorov turbulence
with γ = 1/3, increases the energy-carrying scale
(decreases nmax).
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