
Numerical Methods and Programming, 2005, Vol. 6 (http://num-meth.srcc.msu.su) 27UDC 532.517:537.584A DYNAMO MODEL IN A SPHERICAL SHELLM. Reshetnyak1 and B. Ste�en2For the convection-driven dynamo in the Boussinesq approximation in a rotating spherical shell, westudy various regimes of thermal convection which may occur in the planetary cores. Our dynamomodel is based on the control volume method, which is well suited for parallel computers usingmessage passing. We consider di�erent boundary conditions at the surface of the shell and mimic aregime with strati�cation, which is typical for compositional convection. The in
uence of the innersolid conductive core on reversals is considered. Applications of our modeling to the two di�erentplanetary geometries | the Earth and Giant planets | are discussed.1. Introduction. It is believed that the magnetic �eld in various astrophysical objects is maintained bythe motions of either an ionized plasma, as it is the case in the galaxies or in the stars (see, e.g., [1]), or of aconductive 
uid, as in the cores of the planets [2]. The description of this magnetohydrodynamic problem isthe subject of the dynamo theory. In contrast to the solar or galaxy dynamo, where the magnetic �eld may berather weak and has little e�ect on the 
ow, the dynamo in the planets and its satellites is strong enough tomake the process nonlinear. In these objects, the Lorentz force is comparable with the other forces. Therefore,planetary dynamos are highly complicated and the usual method of investigation is numerical simulations.Since the magnetic �eld generation is a three-dimensional process, reasonable results were obtained only afterappearing the modern supercomputers [3, 4].If ten years ago, the main aim of geodynamo simulations was to obtain any self-consistent dynamo solution,now we have a variety of such solutions; therefore, a thorough analysis of the bulk of 3D-simulated data as wellas the parameters in use is needed. This necessity is also reinforced by the uncertainty of details of the innerEarth and by the much larger uncertainty of physical models for the interior of other planets.Here we propose a new multiprocessor version of the control volume geodynamo code (see for details ofthe algorithms in [5, 6]). We consider the parameters corresponding to di�erent regimes of thermal convectionin spherical shells of various thickness. For this reason, we study a set of thermal boundary conditions and aregime with strati�cation. We show that the change of the relative strength of the Coriolis force leads to themagnetic �eld morphologies typical for the geodynamo or the Giant planet dynamos.The other aim of this modeling is to consider the magnetic �eld distribution during the reversals of themagnetic �eld and to estimate the correlation of the magnetic �eld behavior at the surface of a planet and inits inner conductive solid core. Some years ago, the stabilizing role of the inner core on the reversals raised nodoubts [7], but now its in
uence is believed to be just some change of the convection and the damping of thefast reversals with a typical time of less than 103 years [8].2. Basic equations.2.1. The mathematical problem. The dynamo process driven by the 
ows of an incompressible 
uid(r�V = 0) in the Boussinesq approximation during the spherical (rICB 6 r 6 rCMB) rotation3 with an angularvelocity 
 is described (see, e.g., [3]) by the induction equation@B@t = r� �V �B�+ q�1r2B; (1)by the Navier{Stokes equationPr�1 E�@V@t + �V � r�V� = �rP + F+ Er2V; (2)1 Institute of the Physics of the Earth, Russian Acad. Sci., 123995 Moscow, Russian Federation; e-mail:maxim@uipe-ras.scgis.ru; Research Computing Center of Moscow State University, 119992, Moscow, RussianFederation; e-mail: rm@uipe.srcc.msu.su2 Central Institute for Applied Mathematics (ZAM) of Forshungszentrum J�ulich, D-52425, J�ulich, Germany;e-mail: b.ste�en@fz-juelich.de3In what follows, by rICB and rCMB we denote the inner core boundary (ICB) and the core-mantleboundary (CMB), respectively,as is customary in geodynamo.
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ux equation with the heat sources G(r):@T@t + �V � r�T = r2T +G: (3)These equations are scaled with the shell's outer radius L, which makes the dimensionless radius rCMB = 1;the inner core radius rICB is equal to 0.35 (like the radius of the Earth). The velocityV, the magnetic �eld B, thepressure P , and the typical di�usion time t are measured in units of �L , q2
���, ��2L2 , and L2� , respectively,where � is the thermal di�usivity, � is the density, � is the permeability, Pr = �� is the Prandtl number,E = �2
L2 is the Ekman number, � is the kinematic viscosity, � is the magnetic di�usivity, and q = �� is theRoberts number.The force F includes the Coriolis, Archimedean and Lorentz e�ects:F = �1z �V + Ra Tr 1r + �r�B��B; (4)where (r; �; ') is the spherical coordinate system, 1z is the unit vector along the axis of rotation, Ra = �go�TL2
�is the modi�ed Rayleigh number, � is the coe�cient of volume expansion, �T is the unit of temperature (seefor more details [3]), and go is the gravitational acceleration at r = rCMB.The inner core (r 6 rICB) with the surface SICB can rotate about the z-axis due to the viscous and magnetictorques � . The momentum equation for the angular velocity ! of the inner core is of the formE I @!@t = Pr rICB ISICB �r' sin � dS; (5)where I is the moment of inertia of the inner core; the stress-tensor components are de�ned as�r ' = E�@V'@r + 1r sin � @Vr@' � V'r �+BrB' sin �:The conductivity of the inner core is assumed to be the same as of the liquid part.2.2. A numerical model. Eqs (1) { (5) were successfully solved using, mostly, the poloidal and toroidaldecompositions and the spectral numerical methods [9]. The origin of such a decomposition technique goesback to the mean-�eld dynamo theory [10], where many analytical results were obtained by means of thesedecompositions. There is no doubt that, for laminar 
ow and regular boundaries, the spectral methods givesuperior resolution and accuracy. For the regimes of fully-developed turbulence with space-dependent coe�cientsin the partial di�erential equations (as well as for the solutions with discontinuities or boundary layers), however,the application of grid methods and primitive physical variables may be preferable. The other advantage ofthe numerical methods that deal with variables in the physical space is their easy implementation on parallelcomputers. The numerical methods used in hydrodynamics for the variables in the physical space can be roughlydivided into the three groups: the �nite di�erence, �nite volume, and �nite element methods. The �rst groupis the simplest in discretization and programming, but for the spherical system of coordinates, it meets seriousstability troubles when the minimal distance between the points is � �r �� �' as r ! 0 and � ! 0, � in thecase of a regular grid with mesh steps (�r; ��; �'). Thus, even the application of methods fully implicit in timeshows poor convergence.The �nite element methods are useful if the convective volume has an irregular boundary and the adaptionof the system of coordinates is not feasible. In this case, the geometric 
exibility of �nite elements compensatesany overhead involved. For spherical symmetrical problems, like the planetary dynamo, the extra complicationsinvolved give no bene�t and such methods are rarely used.In this paper we use the �nite volume (or control volume) method developed by Patankar [11]. This methodused usually for the thermal convection problems in the Cartesian geometry was recently applied with success tothe geodynamo problem in a rotating sphere [5, 6]. The main advantage of this method over the �nite di�erencemethod is that the dynamo problem is formulated in terms of 
uxes. If the 
uxes at the zero surfaces of controlvolumes in the center or at the axis are zero (which is, of course, equivalent to the natural assumption that allvelocities are �nite), no additional boundary conditions are needed (see [5] for details).2.3. Parallelization. For the implementation of the model (2) { (5) on a grid of size M3 (say, M � 102)on a supercomputer, the single-processor MHD code [5, 6] was improved to a multiprocessor version.



Numerical Methods and Programming, 2005, Vol. 6 (http://num-meth.srcc.msu.su) 29For this purpose, we applied the MPI library tools for communication, which makes the code independentof the computer architecture. In order to parallelize the program, the volume of the whole sphere was dividedinto (N� �N') (N = N� = N' = 3� 5) slices in the two angular directions (� and '), so that eqs (1) { (5) weresolved on each processor simultaneously. Two additional processors were reserved for synchronization of theprocesses and for input-output operations. The exchange operations between the di�erent processors requirepassing of two-dimensional surface arrays to the neighbor subvolumes.The code was tested on computer systems of di�erent architectures, such as PC clusters as well as amultiprocessor IBM supercomputer with the shared memory for 32 processors each. For the tested values ofM and N = 5, the communication required about 15% of the total time, revealing acceptable e�ciency ofparallelization.3. Results of simulations. To model di�erent thermal regimes of convection, we rewrite the convectiveterm of the heat-
ux equation in \homogeneous" form. For this purpose, we divide the temperature into twoparts: T = T0 + T 0, so that r2T0 = �G(r). Then, instead of Eq. (3) we obtain the following equation for theperturbation T 0: @T 0@t + (V � r) (T0 + T 0) = r2T 0: (6)Eq. (6) has the homogeneous boundary conditions of the same kind as the original equation (3). This approachis very convenient from the numerical point of view [12] and does not in
uence the solution of the system (1),(2), (4), (5), what was checked in our tests. Below we consider various spherically symmetric thermal boundaryconditions (see for details of regimes with inhomogeneous boundary conditions in [13]).3.1. Fixed temperature at ICB & CMB. Regime I. Traditionally, the simplest thermal regimeconsidered in the dynamo models has two prescribed boundary temperatures (heating below, TICB > TCMB)and G = 0. Let TICB = �1 and TCMB = 0. Then (see Figure 1) T0 = �1� r=rICB1� rICB and T 0ICB = T 0CMB = 0.
Fig. 1. Temperature pro�les T0 (left axis) | 1, 2, 3 and its gradient, rT0 (right axis, lines withlabels) | 4, 5, 6 for Regimes I, II, III, respectively. The dotted line (left axis) is the normalized density of theheat sources G(r)=5:37 in Regime IIIIn contrast to the other thermal regimes (see below), this regime provides the maximal gradient of thetemperature �eld near ICB4. In its turn, vigorous convection in this region generates a strong dipole magnetic�eld, which is characteristic for the geodynamo. Therefore, these conditions are often applied in simulations.For this regime, the evolution of some selected integral quantities is presented in Figure 2 for E = 3 � 10�3,Pr = 1, Ra = 103, and q = 2 on the grid (35� 35� 40) with 3� 3 + 2 processors.The mean level of the kinetic energy Ek for this regime is similar to that of the magnetic energy Em (theequipartition state). This is a typical situation for regimes with moderate rotation. To reach a superbalanceregime, where the magnetic energy (as it is believed to be in the Earth' core) is orders of magnitude larger thanthe kinetic energy, one needs a smaller E, which in its turn requires the application of superdi�usion [14] or amuch �ner grid. However, the existence of superbalance is a very tricky point, whereas a role of the Lorentzforce in the dynamo process is not clear. It follows from [3] that the magnetic �eld does not change the form ofthe convective structures too much (the magnetic �eld appears to be force-free) and its in
uence is reduced toappearing of additional quasiperiodic oscillations. At the same time, reversals of magnetic �eld can be describedin terms of the pure kinematic problem [15] with the same parameters as in the full problem and with the sameinitial conditions for at least some di�usion times. It is worth noting that for the �rst 14 harmonics at least the4Note that an increase of the Prandtl number gives the same e�ects.
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Fig. 2. Regime I, E = 3 � 10�3, Pr = 1, Ra = 103, q = 2. Evolution of: magnetic dipole g01, inclination I, kineticenergy Ek, magnetic energy Em, and magnetic energy of the inner core Em coreobservable spectrum of the poloidal geomagnetic �eld at CMB decays as � e�0:1n. Observations of the higherwave numbers n are noisy due to the mantle conductivity. Even a slow decay of the magnetic spectrum makesthe geodynamo problem di�cult for simulations. Estimates of the integral spectrum over the volume of thekinetic and magnetic energies reveals the existence of a maximum of the kinetic and magnetic energies at thesmall scales � E1=3 [16, 17] and the application of superdi�usion cannot be justi�ed.Another point is the distributions of the magnetic energy in the inner and outer parts of the core andtheir ratio. To the best of our knowledge, the volume of the Earth's inner core is only 4% of the volume ofthe entire core, while the ratio of the magnetic energies is of order � 10�3, which corresponds to the ratio ofenergy densities of � 10�1. That is why the in
uence of the inner core should only be a second-order e�ect(see, also [17]) manifesting itself only in a change of the hydrodynamics of the liquid core and in damping of thereversals and excursions with a typical time scale shorter than 103 years [8]. However, in many of our simulations(including those illustrated in Figure 2), the evolution of the magnetic energy of the inner core Emcore correlateswith the behavior of the virtual dipole of the magnetic �eld (VGP) presented by the �rst Gauss coe�cient g01at CMB5. As a result, reversals occur when the magnetic energy of the inner core is small.During �ve di�usion times (Figure 2), there were a few reversals and excursions as well as a few shortevents at which VGP oscillated in the equator plane. The ratio of duration of the longest and shortest intervalsof the same polarity is more than one order. Between the reversals, the inclination I of VGP is about 70�, whichis close to that of the Earth (IEarth=76�). Recall that in geomagnetism [2] the inclination is de�ned by the �rstGauss coe�cients as I = �2 � arccos� g01qg0 21 + g1 21 + h121 �.The Gauss spectrum of the magnetic �eld at ICB shows a predominance of higher harmonics. Its maximumis at l = 4, close to the scale of the convective roles (see Figure 3). Meanwhile, the ratio R of the dipole toquadrupole modes at the Earth's surface is � 10, close to geophysical observations. The magnetic �eld showsthe dipole structure (see �gure 4), but the amplitude of higher harmonics is very large.We also present the trajectory of VGP (see Figure 5). In accordance with the paleomagnetic observa-tions [18], the VGP path reveals chaotic precession without any certain clock- or counter-clockwise direction ofprecession in the vicinity of the poles. A small shift of the mean position of VGP relative to the south geographicpole is probably due to the shortness of the time interval of simulations.3.2. The �xed temperature at ICB and the heat 
ux at CMB. Regime II. Another regime ofthe thermal conditions relevant to geophysics is a �xed temperature at ICB, TICB = 0, with a �xed heat 
uxat the outer boundary, @T@r ����CMB= �1, and the heat sources uniform over the shell volume: G(r) = 3. Thisgives T0(r) = 1 + r2ICB=2 � r2=2 (Figure 1). In this regime, with rT0(r) = �r, convection is shifted in the5Recall (see, e.g., [2]) that the solenoidal magnetic �eld B at CMB, due to the vacuum conditions, can be represented in theform B = �rU , where the scalar potential U for r > 1U(r; �; ') = r�n�2 1Xl=1 lXm=0(gml cos m'+ hml sin m')Pml (cos(�))is a solution to the Laplace equation�U = 0. Here Pml is the associated Legendre polynomial and gml , hml are the Gauss coe�cients.
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Fig. 3. For the same parameters as in Fig. 2.Equatorial section (left column) and axisym-metric part in meridional section of V. Mi-nimal and maximal values for the �rst line(�62:0; 128:8), (�28:0; 31:9), for the second(�63:2; 34:6), (�22:3; 31:9) and for the third line(�90:3; 72:7), (�11:7; 39:9) Fig. 4. For the same parameters as in Fig. 2.Equatorial section (left column) and axisym-metric part in meridional section of B. Min-imal and maximal values for the �rst line(�4:16; 2:02), (�1:87; 2:52), for the second(�1:16; 2:29), (�1:11; 1:04) and for the third line(�1:93; 1:21), (�:87; 0:40)
Fig. 5. Mollweide projection for VGP wanderCMB direction, which directs the system to a state where the length of the time period with small inclination Iincreases (Figure 6). However, there are some time periods with I comparable with the typical geophysical value,but on average the values of I are quite moderate.As in the previous case, the evolution of the magnetic energy of the solid core follows the evolution of themagnetic dipole at CMB, so that reversals take place when the magnetic �eld in the solid core is weak. Thevalue of R at CMB is close to unity. This regime resembles the magnetic �eld of the Giant planets (Neptune andUranus), where I is about 50� [2]. To get closer to the geostrophical regime, one needs to decrease the Ekmannumber E (or to increase Pr, [17]); in this way the in
uence of the boundary conditions can be decreased.3.3. Strati�cation. Regime III. In addition to these two unstable regimes of thermal convection, theuncertainty of geophysical parameters admits the stable regime for which the outer part of the liquid core isstrati�ed [19]. Having in mind that the equation for the light fraction in the compositional model has the samestructure as the heat-
ux equation Eq. (6) [19], we can mimic this situation in the Boussinesq model as well,setting @T0@r > 0 in the outer part of the spherical shell. The same situation can also occur in an inelastic model



32 Numerical Methods and Programming, 2005, Vol. 6 (http://num-meth.srcc.msu.su)
Fig. 6. Regime II, E = 3 � 10�3, Pr = 1, Ra = 103, q = 4. Evolution of: magnetic dipole g01, inclination I,kinetic energy Ek, magnetic energy Em, and magnetic energy of the inner core Em corefor the pure thermodynamic problem, where the adiabatic cooling is taken into account [19].To simulate this regime, we propose T0(r) = �1 + r2ICB=2� r2=2� (1� r) + �r2(r � rICB)=2 (Figure 1),where the choice of � = �2 ��rICB + r2ICB + 3� =(r2ICB � 4) provides a change of the sign of @T0@r in the middleof the convective shell rm = (rICB + rCMB) =2. This temperature pro�le is equivalent toG(r) = 9rr2ICB � 12r + 6r2r2ICB + 60r2 � 2r2ICB � 8 + r4ICB � 12rICBr2 � 6rr3ICB � 18rICBrr (r2ICB � 4)with TICB = 1� rICB, we get @T@r ����CMB= �1=2� r2ICB=2 + �(1� rICB) + �=2.As in the case of Regime II, the temperature gradient shifts the convection away from the ICB. On theother hand, a positive temperature gradient near CMB suppresses convection in this region. In fact, for anobserver at the planetary surface, this situation should be similar to an increase of the mantle's thickness andof its corresponding screening: the higher harmonics of the magnetic �eld are su�ciently damped as � r�l�2.In this sense one can expect that for the dipole magnetic �eld generation, this regime is somewhere between theregimes I and II. Meanwhile, the numerical simulations did not reveal any signi�cant di�erence to the regime II,except that R = 2 at CMB. This is because in all our regimes, convection concentrates near ICB (so thatPr = 1) and strati�cation of the outer part of the liquid core does not change the general situation. However, forthe fully turbulent regime (where vigorous convection will occupy the whole volume of the shell) as well as forthe compositional convection regime (when Pr � 1 and columnar convection will be exchanged by the inertialwaves trapped in the equatorial region [20]), the in
uence of strati�cation can be of greater importance.4. Convection in a thin shell. For comparison, we consider the regime with twice the radius of the innercore, rICB. This geometry corresponds to the convective zone of the Sun as well as to the cores of some Giantplanets. For the Sun, however, the other parameters are also quite di�erent from the Earth, so we consider onlythe relevance of this regime for Uranus and Neptune. These planets are characterized by the small inclinationI = 34� (Uranus) and I = 47� (Neptune) as well as by the small value of R � 1 [2]. In order to understandthis di�erence, we note that in the dynamo models the forces in rotating shells exhibit two kinds of symmetry:the axisymmetric symmetry of rotation (Coriolis force) and the spherical symmetry of gravity (Archimedeanforces). The variation of the ratio of these forces may change the symmetry of the generated magnetic �eld.This consideration leads us to a conclusion that the in
uence of rotation in these two planets is not so large asin the Earth. Due to uncertainty of the parameters for these planets, this phenomenon allows slightly di�erentexplanations.The �rst one was proposed in terms of the early �2!-models [21], which gives a larger value of I than the�!-dynamo model used traditionally in geodynamo. Large-scale simulations based on 2.5-models, supportedthis proposition [22]. In both the cases, the role of the di�erential rotation was smaller than it appears to be inthe Earth's core.In the recent paper [23], the authors o�er another explanation of this phenomenon. They introduce the ideaof a strati�ed convection in the bottom layer of the liquid core, which in turn reduces the di�erential rotation.As a result, this model produces a spectrum of the magnetic �eld comparable with observations. Unfortunately,our present knowledge of the interior of the planets is not detailed enough for any strict conclusions on this



Numerical Methods and Programming, 2005, Vol. 6 (http://num-meth.srcc.msu.su) 33subject7.Here we present simulations according to the �rst scenario, with an increased Rayleigh number and witha su�ciently large Ekman number; in contrast to [22], simulations are performed in a thin shell (rICB = 0:67)with the inner core of the same conductivity as the outer part (see geometry and typical maps of the �elds inFigure 7). The choice of such a large value of the Ekman number gives the proper ratio of the Archimedeanand Coriolis forces to obtain the desired magnetic spectrum. A decrease of the shell thickness causes a generaldecrease of scales of the �elds.We started our simulations from the typical geophysical state, with a dominating dipole �eld and largemagnetic energy of the inner core (see Figure 8).
Fig. 7. Regime II, rICB = 0:67, E = 3 � 10�4, Pr = 0:1, Ra = 103, q = 8 on the grid 65� 65� 64.Meridional (left column) and equatorial section (right column) of the V'-componet (upper line) andB'-componet (bottom line) of the �elds. Minimal and maximal values of the velocity: (�102; 67),(�112; 62) and magnetic (�0:14; 0:16), (�1:0; 1:5) �elds

Fig. 8. Regime I, rICB = 0:67, E = 10�3, Pr = 1, Ra = 3 � 102, q = 5. Evolution of: magnetic dipole g01,inclination I, kinetic energy Ek, magnetic energy Em, and magnetic energy of the inner core Em coreAfter an intermediate regime without reversals, the system came to the state with a smaller value of themagnetic energy of the inner core, Em core, and the reversals appeared. The mean level of I decreased to � 50�,comparable with that in the Giant planets.5. Discussion. Our analysis of the simulated magnetic spectrum at the planetary surface shows that thisspectrum is not su�cient to get unambiguous information about the mean features of MHD 
ows in a liquidcore. Although the reversals of the magnetic �eld are a prominent phenomenon and up to now the study of theirmorphology is a subject of continuous debates in the theory of paleomagnetism [18], they give little informationon the magnetohydrodynamics of a liquid core.There are many reasons for such a conclusion. One of them is that the dipole mode at CMB is only twotimes larger than the quadrupole mode. In this regard, one of the simple models of reversals and excursions iscorrelation and anticorrelation of the dipole and quadrupole oscillations. The �rst one gives us the full inversion.In the second case, anticorrelation prohibits the full reversal and the excursion takes place [17]. This situationis the subject of the 2.5 models of reversals [24]. Further, and more important, the invisible toroidal part of themagnetic �eld and the mean poloidal part in the shell volume have spectra quite di�erent [16] from that of thesurface �elds. Spectra in the volume have a maximum in the higher wave numbers. Usually, during the reversals7According to [17], application of the stress-free boundary conditions for the velocity �eld causes increase of di�erential rotationand also provide su�cient generation of the magnetic �eld.
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