
Numerical Methods and Programming, 2004, Vol. 5 (http://num-meth.srcc.msu.su) 41UDC 532.517:537.584THE SUBGRID PROBLEM OF THERMAL CONVECTIONIN THE EARTH'S LIQUID COREM. Reshetnyak1 and B. Ste�en2The problem of turbulent thermal convection in the Earth's liquid core is considered. Followingassumptions on decreasing of the spatial scales due to rapid rotation, we propose a subgrid modelof eddy di�usivity used in the large-scale model. This approach makes it possible to model realisticregimes with small Ekman and Rossby numbers (E � 10�14, Ro � 10�8) and with a su�ciently largeRayleigh number Ra � 1012. An estimate obtained for the averaged kinetic energy is comparablewith observations. The model includes rotation of the solid core due to viscous torque.1. Introduction. Convection in the Earth's liquid core caused by radioactive heating and compositionalprocesses [1] is the subject of numerous researches, usually concerned with geomagnetic �eld generation aswell. The last few decades are demonstrating a fascinating development in this area of research [2]. Basedon the MHD large-scale equations, numerical simulations can reproduce di�erent geomagnetic and geophysicalphenomena: various properties of the geomagnetic �eld (e.g., its reversals and spectrum), eastward rotation ofthe Earth's inner core as well as the realistic ratio of kinetic and magnetic energies [3].However, a wide range of spatial and time scales makes the direct numerical simulations (DNS) verycumbersome. The di�culty is caused by small values of transport coe�cients: e.g., the kinematic viscosity ofthe liquid core is �M = 10�6 m2 s�1 and the thermal di�usivity �M = 10�5 m2 s�1 (here the superscript Mindicates the molecular values). This gives the following estimates of molecular Reynolds and Peclet numbers:ReM = VwdL�M � 109 and PeM = VwdL�M � 108, where Vwd = 0:2� year�1 is the west drift velocity andL = 3 � 106 m is the liquid core scale [4], which corresponds to the regime of highly developed turbulence. Inthe case of Kolmogorov's turbulence 3D DNS, simulations require � Re9=4 = 1020 grid nodes [5]. Attemptsto use the exact values of these parameters on coarse grids lead to numerical instabilities. The �rst intuitivemodels in geodynamo theory that suppress instabilities at small scales (e.g., the model of hyperdi�usivity [3])gave rise to new questions concerned with interpretation of the results obtained [6]. The more consistent wayis an application of semiempirical turbulence models [7]. Usually, these models are based on assumptions onthe cascade transfer similar to Kolmogorov's, which gives descriptions of the average e�ect of small-scale �eld
uctuations on the large-scale 
ow in terms of eddy di�usivity. The recent studies on the subgrid [8] and morecomplicated models [9, 10] for the thermal convection and dynamo problems in rotating spheres revealed theprincipal possibility of describing the small-scale 
uctuations in turbulence with desired Reynolds and Pecletnumbers, much like Kolmogorov's model.These models work up to the regime of moderate rotation speed. The further increase in the Coriolisforce can reduce the total kinetic energy and even suppress convection at all. From linear analysis it followsthat the critical Rayleigh number depends on the Ekman number like Racr � E�1=3 [11]. Even though themolecular estimate of the Rayleigh number gives huge numbers RaM � 1014 [12, 13], this value is only 5 � 102times larger than the critical value Racr [2]. Due to rapid rotation of the Earth, the situation in the liquid coreis more complicated and assumptions on similarity of the �eld spectral characteristics must be checked verycarefully. We show that the direct applications of the traditional turbulence models based on the mixing-lengthassumptions lead to results that di�er from the observations by orders of magnitude. The cause of such adisagreement lies in the daily rapid rotation of the Earth, which gives rise to new characteristic spatial scalesin the core [14]. As a result, the energy distribution in the spectrum changes, which leads to di�culties for theapplication of Prandtl{Kolmogorov's approach to eddy di�usivity estimation. Convection at these new scalesplays a crucial role in the energy balance of the whole system and changes the estimate of total energy by orders1United Institute of the Physics of the Earth, Russian Acad. Sci, 123995, Moscow, Russian Federation;e-mail: maxim@uipe-ras.scgis.ru; Research Computing Center of Moscow State University, 119992, Moscow,Russian Federation; e-mail: reshet@srcc.msu.su;2 Central Institute for Applied Mathematics (ZAM) of Forshungszentrum J�ulich, D-52425, J�ulich, Germany;e-mail: b.ste�en@fz-juelich.dec
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42 Numerical Methods and Programming, 2004, Vol. 5 (http://num-meth.srcc.msu.su)of magnitude. Even a simple account of these e�ects leads to substantial change in the rate of energy dissipationand thus to a better agreement of LSS models with observations.In Section 2 we introduce the large-scale equations of thermal convection and consider Prandtl{Kolmogorov'sassumptions on eddy di�usion. In Section 3 we recall the foundations of convection in a rapidly rotating bodyand obtain an estimate for subgrid di�usion. Afterwards, this estimate is used in the large-scale model, Section 4.Our discussion of results is in Section 5.2. The large-scale equations. The problem of thermal convection in the Earth's core can be reducedto that in a spherical shell. Let the surface of a sphere of radius r0 (in the spherical system of coordinates(r; �; ')) rotate with an angular velocity 
 about the z-axis. This sphere contains a concentric solid innersphere of radius ri; the outer spherical layer (ri < r < r0) is �lled with an incompressible liquid (V = 0). Thesolid inner sphere may rotate freely about the z-axis due to viscous torque. Convection in the outer sphereis described in the Boussinesq approximation by the Navier{Stokes equation and by the heat-
ux equation.Choosing L = r0 as unit of length, we can measure the velocity V, the time t, and the pressure p in units of�M=L; L2=�M, and 2
��M, respectively. Then, the governing equations can be written in the formRoM �@V@t + (V � r)V� = �rp� 1z �V + RaM Tr1z + EMr� $S; (1)@T@t + (V � r) (T + T0) = r � (rT ); (2)where 1z is the unit vector in z-direction, $S is the strain tensor, and T is the temperature 
uctuations relativeto the imposed pro�le T0 = ri=r � 11� ri . The molecular Rossby RoM, Ekman EM, and Rayleigh RaM numbersappear in these equations: RoM = �M2
L2 ; EM = �M2
L2 ; RaM = �g0�TL2
�M :Here � is the thermal expansion coe�cient, g is the gravity acceleration, and �T is a temperature unit (�T �10�4 K, see [2]). It should be mentioned that the Rayleigh number for nonrotating bodies is usually given inthe form fRaM = �g�TL3=�M�M and that RaM = EM fRaM.The nondimensionalized momentum equation for the angular velocity ! of the inner sphere (0 < r < ri) isof the form RoM I @!@t = ri EM IS S'r��r=ri sin#dS; (3)where I is the moment of inertia of the inner sphere S and S'r is the strain tensor component in the sphericalsystem of coordinates [2]. Equations (1), (2), and (3) are accompanied by the nonpenetrating and no-slipboundary conditions for the velocity V and for zero temperature 
uctuations at the shell boundaries.The system (1), (2), (3) was successfully studied in the regimes of laminar convection with the use ofdi�erent numerical approaches [2, 16]. However, these regimes are still very far from the desired estimatesfor the Earth's liquid core RoM = 10�8, EM = 10�14, and RaM = 1014 [2]. Attempts to approach to theseparameters using DNS caused numerical instabilities and required the application of turbulence models [8].However, even the direct usage of the known turbulence models is not trivial.To support this point, we o�er a simple estimate of eddy di�usivity on the basis of the most popularmixing-length assumption. Following Prandtl{Kolmogorov's hypothesis, the eddy di�usion at scale l can beestimated as �T = ("l4)1=3, where " = v3=l is the energy dissipation rate and v is the velocity at scale l.Even the upper-bound estimate based on the main scale l = L and the west drift velocity V = 3 � 10�3 ms�1gives �T = 2 � 103 m2 s�1 for an Ekman number of order ET = 2 � 10�5. The more realistic estimate withVl = �V � V � lL�1=3 and a usual grid scale of l � 3 �10�2L yields �T = 15 and ET = 10�7. On the other hand,this estimate of ET would require resolution of about N' � 2 � 102 cylindrical columns in the 
ow [11], whichnecessitates the use of the most powerful modern computers. All this means that the above estimate of �T willnot provide the smooth �eld behavior assumed in Kolmogorov's turbulence when ET > 1. Thus, the traditionalmethods underestimate the eddy di�usion �T.Such a situation corresponds to the case for which the classical ideas on the direct cascade of energy fromthe main scale L to the dissipative scale are violated and additional information on " at dissipative scale is



Numerical Methods and Programming, 2004, Vol. 5 (http://num-meth.srcc.msu.su) 43needed. In Section 3 we show that in the case of a rapidly rotating body the energy in the spectrum is shiftedto small scales unresolved by DNS even at the onset of convection. This is the reason why any attempt toestimate �T in the turbulent regime at scales compared to the grid resolution lead to the not selfconsistentbehavior of the turbulent model.The way out of such di�culties is to formulate proper assumptions on the spectral properties of the solutionin the range of high wavenumbers.3. Predictions of asymptotic analysis. The origin of the problem can be seen from the analysis oflinearized system (1), (2) at the onset of convection in the limit of small Rossby and Ekman numbers. Asshown in [11] (see also the recent paper [17]), at the onset of convection the 
ow structure tends to developcolumns along z-direction such that @=@' � O(E�1=3), @=@s � O(E�1=6), and @=@z � O(1) when E = Ro! 0.Linearization of system (1), (2) leads to the balance of Archimedean and viscous terms in the Navier{Stokesequation: Ra T � E�1=3 V . The balance of convective and viscous terms in the heat-
ux equation givesV � E�2=3 T from which follows the estimate of the critical Rayleigh number Racr � E�1=3. (For conveniencewe omitted superscript M.) Thus, at the onset of convection for system (1), (2), the 
ow is anisotropic with thesmallest scale lE � E1=3L de�ned by the balance of Coriolis and viscous forces. Note that the scale lE � 10�5is beyond the level of DNS. If this asymptotic behavior is valid, the critical Rayleigh number in the Earth's coreis Racr � 105 [2]. As we show below, the predicted column-like form of 
ow is very important for estimates ofsubgrid dissipation in the liquid core.The main assumption is that even in the turbulent regime believed to be in the Earth's liquid core, the
ow tends to elongated structures with the smallest scale lE predicted by linear analysis. It is from the scalelE , the ideas of the direct cascade of energy are applicable. To simplify the problem, we estimate the isotropiceddy di�usion on the basis of the scale (lE ). In particular, instead of the estimate of velocity gradient at thesubgrid scale l: V 0 � �V=l, we use V 0 � E�1=3 �V , where �V � 0:3V is the average variation of velocity atscale l. In this case the estimate of eddy di�usion gives �T � l2V 0 � 5 � 104 m2 s�1 and ET � 5 � 10�4. Thisestimate of turbulent Ekman number corresponds to N' � 10 columns that can be resolved in the large-scalemodels with desired accuracy. To demonstrate these arguments, we propose simulations of system (1), (2), (3)with the given eddy di�usion �T estimated above.4. A turbulent model. Numerical results. Equations (1), (2), and (3) are solved using the control-volume method (Simple algorithm) [18] on the staggered grid (nr; n�; n') = (45; 45; 64). This method isbased on a �nite-di�erence approximation and demonstrates very high numerical stability for the regimeswith intensive convection3 . For ease of calculation, we renormalize these equations, using turbulent di�usionunits, so that instead of �M the value b� = 1 m2 s�1 is used. Then, the dimensionless parameters becomeRoT = b�2
L2 = 4 � 10�2 and ET = �T2
L2 = 10�3. We consider the three regimes with turbulent Rayleighnumbers RaT = �g0�TL2
b� = 106, 107, and 108 (see the time evolution of kinetic energy EK in Figure 1). Thecorresponding Reynolds numbers averaged over the shell volume ReM = b��Mp2EK are 3 �109, 6 �109, and 2 �1010(c.f. with the molecular Reynolds number for the Earth's core based on the west drift velocity ReEarth � 109).Some characteristic snapshots of large-scale velocity r-, �-, and '-components are presented in Figure 2.The observed curls in r- and '-projections correspond to the columns parallel to the z-axis. These columns maydrift in '-direction. In its turn, the nonzero viscous gradient � @@r �V'r �r=ri causes rotation of the inner core(see the evolution of the inner core angular velocity ! in Figure 1). Here the positive value of ! corresponds tothe eastward direction known to occur in the Earth [20]. We emphasize that these maps are a result of averagingof small-scale (lE � O(EM1=3) = 10�5) structures. So far, the micro-scale Reynolds number re at scale lE isstill larger than unity and the inertial spectrum for the scales smaller than lE exists. An estimate of re = vl�Mwith l = EM1=3 and v = 0:1V gives re � 103. This spectrum has two parts with the transition point de�nedby the balance of inertial and Coriolis terms: l
 � Ro v. The turbulence in the range lE 6 l
 is in
uenced byrotation; the kinetic energy spectrum is El � l2 [21]. For the scales smaller than l
 up to the dissipative scaleld = Re�3=4, Kolmogorov's spectrum El � l5=3 reappears.Summarizing the above results, we conclude that based on the realistic values of Rossby and Rayleighnumbers and on assumptions on the 
ow spectrum in the liquid core we obtained a value of kinetic energy EKcomparable to observations. Keeping in mind that the velocity �eld and the eddy di�usion are associated in3See [19] for some special considerations of the control-volume method for the full dynamo problem in a sphere.
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Fig. 1. Evolution of the liquid core angular velocity ! and the kinetic energy EK averaged over the volume forRo = 4 � 10�7 and E = 10�14; (1): RaT = 106 | thick line, (2): RaT = 107 | thin line,(3): RaT = 108 | dashed line
Fig. 2. The snapshots of the velocity �eld components vr; v#; and v' (from left to right) for the equatorialsections (the left half-plane): (�700; 1200), (�4700; 4100), (�1200; 1800) and meridional sections for theaxisymmetric parts of the �elds (the right half-plane): (�2400; 1800), (�3800; 3100), (�400; 1000). Here thenumbers in parentheses indicate rangesour model, we consider this agreement to be worth to note.5. Conclusions. We propose a scenario of turbulent thermal convection in a rapidly rotating body whenthe Coriolis force shifts the system to the origin of small scales even at the onset of convection. We alsoshow that the further increase in intensity of heat sources leads to a turbulent regime which is still far fromKolmogorov's case. It appears that the linear analysis predictions at the onset of convection are applicableto our eddy di�usion estimate in the regime of fully developed turbulence. Though the original problem is



Numerical Methods and Programming, 2004, Vol. 5 (http://num-meth.srcc.msu.su) 45highly anisotropic, the \isotropic" estimate of eddy di�usion gives a kinetic energy of the system comparable toobservations. Note that the introduction of the magnetic �eld will not change the problem in essence, because atthe scales lE considered the corresponding micro-scale magnetic Reynolds number is rm � 1 and the magnetic�eld decays due to the ohmic dissipation process. On the other hand, it is not yet clear how the west driftvelocity relates to the 
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