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The Shell Model Approach to the Rapidly Rotating

Liquid Bodies

M. Reshetnyak∗

Abstract

Applications of the shell model of turbulence to the case of rapidly rotating bod-
ies are considered. Starting from the classical GOY model we introduce the Coriolis
force and obtain a ∼ k−2 spectrum for 3D hydrodynamical turbulence for the free
decay regime as well for the regime with external forcing. Additional modifications
of the GOY model providing a realistic form of the helicity are proposed.

1 Introduction

The influence of rotation on the properties of the hydrodynamical turbulence is of the great
importance. This problem appears in the various geophysical and astrophysical applications and
it requires special treatment. So far the direct 3D numerical simulations, where implementation
of the Coriolis force is trivial, cannot provide a long enough inertial range of spectrum to reveal
its scaling laws, thus different approaches are needed. Though the possibility of transition from
3D-turbulence state to the two-dimensional turbulence due to rotation was already predicted by
Batchelor many years ago [1], only now is the qualitative description of this processes developing
[2]. Having in mind the similar situation in the MHD turbulence [3], where the magnetic field
plays the same role as the rotation in reducing the dimension of the problem, the authors
proposed that the Coriolis force introduces a new characteristic time. This time should be
used instead of the characteristic turn-over time based on the Kolmogorov’s estimate. Then,
instead of Kolmogorov’s −5/3 slope the spectrum will have a −2 slope. It appears that this
approach is in agreement with the direct numerical calculations [4] and the experiments [5]. The
formal simplicity of this phenomenological approach attracts us to implement it in the more
complicated models of turbulence. For this aim we use the well-known homogeneous isotropical
GOY shell model (see overview in [6]) and modify it to the case of rotation. The proposed model
is tested for the regimes of the free-decay turbulence and for the regime with external forcing.
We also consider a situation, where a non-zero average helicity is generated. This regime finds
its application in the mean-field dynamo problems.
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2 Shell model equations

The idea of the shell model approach is to mimic the Navier-Stokes equation by a dynamical
system with N complex variables u1, u2, . . . , uN , which represent the typical magnitude of the
velocity on a certain length scale. The Fourier space is divided into nN shells, so that un is the
velocity difference over length ∼ 1/kn, kn = 2n. Here and after we will refer to the GOY model
[6], which has the form:

Ro
dun

dt
= Ro ikn

(
u∗n+1u

∗
n+2 −

ε

2
u∗n−1u

∗
n+1 −

1 − ε

4
u∗n−2u

∗
n−1

)
−

−E k2
nun + Fn,

(1)

where Ro and E are the Rossby and Ekman numbers, ε is a free parameter, ∗ is the complex
conjugate, and F is a force. In general, F = Fc + f , where Fc is the Coriolis force and f is an
external force. In the inviscid limit (E → 0) and free forcing (F = 0) equation (1) conserves

the kinetic energy Ek =
∑
n
|un|2 and Ĥ =

∑
n

[sgn(ε − 1)]nk
α(ε)
n |un|2 is an analog of helicity

Ĥ = VrotV in the 3D case with α(ε) = −log2(|ε − 1|/2). In the case of ε = 1/2 the dimension
of Ĥ is equal to the dimension of the hydrodynamical helicity, it is this value of ε we consider
in the paper.
To introduce effect of rotation in the GOY model we propose that the Coriolis force can be
written in the form:

Fcn = −iCrun, (2)

where Cr is the real constant. It is easy to see, that the work of the Coriolis force (2) is zero
(u∗nFcn + unFc

∗
n = 0) and no additional energy is introduced into the system (1–2) at any scale.

Having in mind, that in derivation of the shell model equations (1) all external potential forces,
as well as pressure, were already excluded using condition of incompressibility (∇ · V = 0), Fc

corresponds to the curl part of the Coriolis force [6].

3 Results of simulation

To analyze behaviour of the hydrodynamical turbulence without forcing we start from the free
decay regime (f = 0). After some intermediate regime for the case without rotation (Fc = 0) the
Kolmogorov’s spectrum (−5/3) recovers. The inertial spectrum extends up to the Kolmogorov’s

scale, estimated from the balance of the inertial Ro knu
2
n and diffusion E k

2
nun terms: kd =

Ro

E
un.

As was predicted in [2], introduction of rotation (Fc 6= 0) gives rise to a new time scale τd ∼ Ω−1.
For Ro � 1, τd is already shorter then the characteristic time in the Kolmogorov’s regime

τdn ∼ k
−2/3
n . A simple dimensional analysis leads to the estimate of the rate of the energy

dissipation ε ∼ τ(k)k4E2(k), where τ is the characteristic time and E(k) is the spectral energy

density. In the case of the Kolmogorov’s turbulence τ ∼
(
k3E

)−1/2
and E(k) ∼ ε2/3k−5/3. If

the effect of rotation is sufficient, then substitution of τ ∼ Ω−1 leads to the rotation spectrum
law [2]: E(k) ∼ (Ωε)1/2 k−2. Starting simulations from the initial field obtained in the non-
rotating regime, after a short time period the original Kolmogorov’s spectrum splits into two

parts with two different slopes. The change in the slope corresponds to kΩ =
C2

Ω

RounΩ

, where

CΩ = 1.22 ÷ 1.87 [2]. This estimate can be obtained from balancing the inertial term and the
Coriolis force. If for the large scales the Coriolis term is larger then the non-linear term, the
spectrum decays as ∼ k−2. In this case non-linear term does not depend on k and the Coriolis
term decays as ∼ k−1/2. The further behaviour depends on how long the spectrum is and where
the Kolmogorov’s wave number kd lies. If kΩ > kd, then the whole spectrum decays as ∼ k−2.
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Figure 1: Spectra of the turbulence with external forcing f0 = 10−2(1+i), E = 10−10, Ro = 10−3.
Solid line corresponds to the regime without rotation, Cr = 0; line with circles corresponds to
the regime with rotation, Cr = 1 and the Coriolis force defined by (2); the dotted line to Cr = 10.
The line with squares corresponds to the modified Coriolis force (4).

In the other case (kΩ < kd) the Kolmogorov’s spectrum −5/3 for k > kΩ reappears. As the
whole kinetic energy of the system decays in time, the kΩ moves in to the region of the large
wave numbers.
To consider the evolution of the system for time periods longer than the characteristic decay
time one needs to provide some source of energy to the system or to introduce an external force
f . The results of simulations over the time period t = 103 with a prescribed force f = 10−2(1+i)
at k0 = 1 without rotation are presented in Fig. 1.
Starting from an arbitrary initial velocity field, the system (1) comes to the statistically stable
state with Kolmogorov’s energy distribution, similar to the free decay case for the moment where
the energy is comparable. As was already mentioned above, the direct introduction of rotation
setting Cr = 1 in (2) contradicts to the physics of the problem and to the original Navier-Stokes
equation: for the regime of the fast rotation (Ro � 1), when V < Ro, the balance between the
pressure and the potential parts of the forces f and Fc holds. Such a balance of the pressure and
the Coriolis force, which takes place, e.g., in the Earth’s liquid core (E = 10−15, Ro = 4 · 10−7),
is called the geostrophic balance (in the present dimensionless units regime the Earth’s core
situation corresponds to RoV < 10−3). Exclusion of the pressure requires exclusion of the
potential parts of all the forces, also. Then, the remaining curl parts of the forces are already
of the same order as the inertial term and it is these parts, which are in the r.h.s. of (1). These
considerations can be formulated as follows:{

Crn = Ro kn|un|, Ro kn|un|2 < |un|
Crn = 1, Ro kn|un|2 > |un|.

(3)

In other words, condition (3) means, that for all wave numbers, where the Coriolis force is larger
then the non-linear term, it must be compensated by the pressure, and its curl part (Fc) must
be of the same order as the non-linear term. The results of simulations with rotation and Cr,
defined by (3), are presented in Fig. 1. As in the free decay case we observe two regimes with
slopes ∼ k−2 for the small wave numbers and the Kolmogorov’s regime ∼ k−5/3 for the wave
numbers k > kΩ. It is easy to see, that in this model the non-linear term has a white spectrum for
k < kΩ. Due to the condition (3), the curl part of Coriolis term Fc has the same distribution in
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the wave space. This state of equipartition was observed after averaging. Analysis of the phases
of the non-linear term and the Coriolis term reveals the existence of anticorrelation. This is the
reason why the spectrum of the rotating turbulence decreases faster then Kolmogorov’s one. In
fact, the Coriolis force partially locks the energy transfer from large to small scales. Moreover,
the Coriolis force blocks the applied external force, so that Fc0 = −fc0 and suppresses injection
of the energy into the system (1) (see demonstration of this suggestion in Fig. 1, regime of
turbulence degeneration with Cr = 10). The other important point is, that decreasing of the
slope of the spectrum caused by rotation is equivalent to increasing of the kinetic energy at the
large-scales [4].
We also present development of the model to description of helicity generation in the rotating
liquid. Note, that the classical definition of Ĥ in the shell model theory does not include direction
of rotation of the whole system. To overcome this difficulty we propose, that the Coriolis force
should be modified as follows:

Fc = −iCru(1 + C1(−1)n), (4)

where C1 is a real constant. This modification of the Coriolis force does not change the slope of
the spectrum (see Fig. 1). From the other point of view, it helps to reproduce regimes with the
non-zero mean level of Ĥ, which are of the great importance in the mean-field dynamo theory
[7].
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