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Correlation characteristics of the secular variation field
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Abstract. Different methods of constructing a spatial autocorrelation function
of the secular variation field on the Earth’s liquid core surface are proposed.
The Earth’s liquid core is found to feature magnetic field irregularities with a
characteristic scale of not over ty >~ 1500 km. This scale is shown to be likely to
correspond to the length of the magnetic loops in the model of Ruzmaykin et al.

[1989].
Introduction

Numerous experimental data and theoretical calcula-
tion results on the structure and origin of the secular
geomagnetic variations have been accumulated to date.
The basic idea, suggested first by Braginskiy [1972], is
that their source is found at the mantle-core bound-
ary. Convective motions of conductive plasma in this
layer tend to generate variations in the magnetic field
at the Earth’s surface. The study of the morphology
of the variations and their sources can conditionally be
divided into two approaches.

According to one of these methods the magnetic field
is extrapolated to the Earth’s core, and based on cer-
tain assumptions of hydrodynamic properties of a con-
ductive medium (e.g., geostrophy of the flow), maps of
flows at the mantle-core boundary are plotted. This
approach entails the well-known difficulties of solving
ill-posed problems and also of choosing a magnetohy-
drodynamic model of the boundary layer at the mantle-
core boundary [Gubbins, 1991].

The second approach is a statistical one. Within its
scope, spatial and temporal spectral characteristics of
the magnetic field and its variations are studied. To ex-
pand the observed field in terms of spherical functions at
a fixed moment of time, energy distribution of the field
itself and its variation over both the Earth’s surface and
the liquid core surface has been thoroughly investigated
[Golovkov and Chernova, 1988; Lowes, 1974]. In partic-
ular, for the secular variation field this distribution over
the core surface is substantially a white noise. The non-
decay of spectrum and increase in errors in the region
of large wave numbers makes it difficult to analyze the
results [Rotanova, 1989]. Another method of studying
the magnetic field statistical properties is to investigate
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its correlation characteristics. We will use this method
in the present study.

One of the models explaining the random behavior
of the secular variation field is the fluctuation dynamo
model [Ruzmaykin et al., 1989], which holds that a ran-
dom magnetic field can be generated in the random flow
of conductive medium with Rm > 10%. Within this
model the simplest characteristics of the random field
are its correlation functions. Kliorin et al. [1988], using
asymptotic methods, constructed correlation functions
of a random magnetic field in a uniform, isotropic, tur-
bulent medium that were determined by a single param-
eter, the magnetic Reynolds number Rm. Pilipenko and
Sokolov [1991a, b] and Sokoloff and Zinchenko [1992)
studied the tensor of a random magnetic field and, us-
ing asymptotic methods, investigated its propagation
through a two-dimensional layer of vacuum, and Reshet-
nyak et al. [1993] constructed correlation functions of
the secular variation field from observational data [Lan-
gel et al., 1982]. The obtained qualitative agreement
with the theoretical model is far from adequate because
of the instability of the inverse problem to the low dis-
turbances in the input data, and therefore a numerical
solution of the problem is required. The possibility of
solving the inverse problem not for the magnetic field
itself but rather for its correlation functions with al-
ready smoothed random errors also leads to enhanced
accuracy.

In this study, we attempted to solve the inverse prob-
lem through the definition of the autocorrelation func-
tion for the normal component H,, of the secular varia-
tion field H on the Earth’s liquid core surface, using the
data of Langel et al. [1982] and Reshetnyak et al. [1993]
(the dot mark means the time derivative). The obtained
result is compared with an analogous result obtained by
extrapolation of the field itself up to the core, and the
focuses of the secular variation on the core surface are
shown to have a scale that is substantially larger than
the field tube cross-section dimension, with which Ruz-
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maykin et al. [1989] intended to identify the focuses.

Autocorrelation Function of a Random
Magnetic Field

Let the secular variation field H induced by con-
vective flows at the core-mantle boundary be random
[Ruzmaykin et al., 1989]. For the sake of simplicity
we approximate the core-mantle interface by a surface
o(z = 0). Because of the boundary conditions for H,
only the normal field component H? is not zero on the
core surface . Assume further that the distribution of
the component H? is uniform. It can then be described
using a correlation function that depends only on the
modulus of distance between points on the o surface:

(1)

where the angular brackets denote the statistical aver-
aging and p is the distance between points on o. It is as-
sumed that variations are not related to the mean field,
so (H?) = 0. As shown by Reshetnyak et al. [1993], the
autocorrelation function H,, at a distance L from the
core o 1s described by the expression

L [ HI.(p)pdpdy
sz(a’L) — _/ 20 UL At M M
(R2, + AL2)3/2

HZ,(p) = (H7H)

- 2)

where Rgp = p2+a?—2pacos ¢ and also meets the con-
dition following from the nondivergence of the magnetic

field:

/H,?z (p)pdp =0 (3)

For the sake of convenience we will hereinafter denote
the distance between points on the core surface by p and
the distance on the Earth’s surface by a.

Kliorin et al. [1988] suggested a model of the auto-
correlation function H?,, a random magnetic field in
a uniform, isotropic, conductive medium. In accor-
dance with the asymptotes given, the minimum value
of HY?, =~ —Rm~%*, and the distance p1 at which the
function H?, (p1) = 0.8H2,(0) is of the order of Rm~1/2;
in this context, Rm = lv/v, where | = 1700 km is the
size of a convection cell, v = 0.1 cm s™! is the velocity
of density convection, v = 2 x 10* cm? 57! is the mag-
netic diffusion coefficient. At Rm = 10% the minimum
will amount to 22 2 x 10~* of the amplitude of the func-
tion HY,. Reconstruction of the correlation function of a
random magnetic field on the core surface is expediently
carried out in terms of the function W determined by
the relationship

Wi(p) = f—z / HE, ()¢dc (4)
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According to (3), W is a monotonically decreasing and
always positive function. In view of (4), (2) takes the
form

(5)
gp + 4L2)5/2

Hov(a, 1) = i/ Wii(p)p* (p — acos p)pdpdy
2w (R

Figure 1a shows a family of functions W for the range
of values of Rm = 102 — 10%. The corresponding fam-
ily of curves H,, on the Earth’s surface is shown in
Figure 2. Figure 3 shows the magnetic Reynolds num-
ber Rm dependence of the correlation function H,,
which can be described by the formula H,,(0) = 2 x
1073Rm™ "% at HY, (0) = 1. (Defined on the Earth’s sur-
face was a model, normalized to its maximum value, au-
tocorrelation function HY,(0) [Ruzmaykin et al., 1989]
as a function of Rm).

Hereinafter, we will solve the inverse problem: from
the prescribed function H,, on the Earth’s surface, cal-
culated by experimental data [Pilipenko and Sokolov,
1991b]; we will find the function W(0,1I) on the Earth’s

liquid core surface.
Observational Data

Reshetnyak et al. [1993] suggested an algorithm for
constructing correlation functions of the secular vari-
ation field on the Earth’s surface and, in particular,
the autocorrelation function H,,, equal by definition
to <HZHZ>, from the observational data of Langel et
al. [1982]. The function was constructed on the as-
sumption of a spheric symmetry of the correlation func-
tions H;;, so that these depend only on the distance be-
tween points a. The algorithm 1is essentially as follows:
One randomly takes a couple of points on the sphere,
such as to uniformly cover the sphere all over its area.
Then, using a spherical harmonic analysis, one com-
putes the components of the secular variation field H
at these points and constructs the correlation functions
H;;(a) therewith. Unlike Tikhonov and Arsenin [1979],
in computing the functions H” at point a, the number
of points is defined from the condition that the median
distance between these be not less than the distance a.
This correction leads to a more realistic estimation of
errors in H” The component HZZ, normalized to the
maximum value 4.8 x 103 (nT/year)?, and its standard
deviation are shown in Figure 2.

Note that relationship (3) is obtained, first, for the
magnetic field itself and not for its time derivative and,
second, on the assumption of a two-dimensional non-
conductive mantle. As for the former condition, it is
expanded to the case of secular variation by virtue of
nondivergence of the field H. Let us consider in more
detail the twodimensional mantle condition. Substitut-
ing into (2) H,, and HSZ for H,, and H?,, respectively,

-
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Figure 1. (a) Autocorrelation functions normalized to their maximum value and standard
deviation for curves 2 and 3 on the Earth’s liquid core surface. Curve 1 indicates a family
of model functions W° depending on the magnetic Reynolds numbers Rm = 107, 103, 10%
curve 2 indicates W' calculated by analytically expanding the secular variation field to the
core surface; and curve 3 indicates W obtained by solving the integral equation (9) followed by
transformation (10). (b) Nonnormalized autocorrelation functions on the liquid core surface at
a defined unit correlation function on the Earth’s surface is shown. Curve 1 indicates a family of
model functions W° depending on the magnetic Reynolds number Rm = 10%, 103, 10*; curve 2
indicates W° obtained by solving the integral equation (9) followed by transformation (10).
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Figure 2. Autocorrelation functions and the standard deviation for curve 2 (Figure 1) on the
Earth’s surface. Curve 1 indicates a family of curves H,, at a family of W defined on the
core surface (Figure la and curve 1) for the magnetic Reynolds numbers Rm = 102, 103, 10%;
curve 2 indicates H,, calculated from experimental data [Pilipenko and Sokolov, 1991b; Sokoloff

and Zinchenko, 1992].

and integrating over the variable a yields

7H3z(a)ada= 7H3,z(p)pdp (6)

Thus condition (3) is invariant relative to parallel trans-
port and is valid on any plane o' parallel to the plane
o of the core-mantle interface and found at a distance
L therefrom. Numerically solving (6) by using observa-
tional sz data yields

o :/sz(a)ada//ﬂgz(a)ada:—0.5
0 0

where the point R is determined from the condition
HZZ(R) = 0. The error §; characterizes the error in the
two-dimensional model (2). Condition (6) and J; make
it possible to significantly confine the class of functions
6 5 H,., wherein the solution is sought. For a sphere
an analogue to (3) is

i

/H,?z(so) sin pdp = 0
0

(7)

Unlike (3), where the function H?, was considered in
an unlimited, uniform, isotropic space, relationship (7)
takes into account the transition to a real, spherical core

of the Earth. In this context the element of area pdp in
(3) changes to sin edyp.
A numerical estimation yields

. 5
&y = /ng(so) sinsodso//ng(so) sin pdep = —0.05
0 0

which is in magnitude far less than d;, where point 3 is
determined from the condition H,,(3) = 0.

Since the condition of positive W} is satisfied only at
81 > 0 we will introduce a new function W¢, as in (4)

P

6 R, .

- / H2.(¢) sin (Ri) @© @)
0

where integration is carried out up until ppa.x = 7R,
and R is the Earth’s liquid core radius. The function
W, thus introduced, is positive and monotonically de-
creasing. Substituting (8) into (2) yields an equation
for W2, similar to (5):

Wg(p) =

. 1 770 2
H..(a, L) = e Wglp)p K
S

sin (p/ Re)

(pa, L)pdpdp  (9)

where

. 1
K (p,a,L) = WX
ap
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Figure 3. Dependence of the amplitude of the
surface on the magnetic Reynolds number Rm.

(=fe(7)- )

The change from Wg to W19[ can always be performed,
using (4) and (8), by formula

3p(p — acos )
Ra,

WSP

Wit(p) = Rosin(p/R) (10)
e | SR (1= e () o

The limiting change at pmax — 0 yields WIQI — Wg
Inverse Problem

Thus the problem of defining a spatial autocorrelation
function WH of the secular variation field on the core
surface has been reduced to solving (9) for WS with
subsequent transformation (10). Equation (9) is a first-
order Fredholm equation and belongs to the class of
ill-posed problems, where a small disturbance of input
data on H,, leads to a great change in solving W2. In
the operator form, (9) can be represented as H., =
AWS, where A is a linear, quite continuous operator
in a certain infinite- dlmensmnal functional space. As is
shown, for instance, by Tikhonov and Arsenin [1979],
the operator A~ L Wthh is reverse to the operator A
does not show continuity for the Fredholm equation of
the first order, whereby (9) requires regularization for
its solution [Tikhonov and Arsenin, 1979].

autocorrelation function H,.(0) on the Earth’s

Stable approximations for solving ill-posed problems
are based on the use of additional information about
the solution sought. In our case, it 1s known a priori
that the rigorous solution belongs to a compact set. In
this case, the inverse operator A=! turns out to be con-
tinuous, and a uniform convergence of a sequence of
approximations to the rigorous solution of the problem
is guaranteed. Tikhonov et al. [1990] have shown that
the information on the rigorous solution being mono-
tonic and limited is enough for the solution to be stated
as belonging to a compactum. The function W meets
all these requirements.

To solve (9), we used the method of conjugate gra-
dients with mapping to a nonnegative set. Figure la
shows the obtained solution of W} and its standard de-
viation. Numerical estimates show that within the ac-
curacy of initial data, transformation (10) introduces no
significant changes in going from WS to WH The am-
plitude of the function W exceeds 1.8 x 103 times the
amplitude of the function H,, on the Earth’s surface.
Since, according to (8), at

1 . . .
=~ —Wi(p), H?,(0)=630H,.(0)

HZ, (p) = 3

p—0,
which is equivalent to a 25-fold enhancement of the rms

magnitude of the field on the surface of the core. Let as
introduce an integral scale W°:

L = 1/W°(0) [ 1°(s)ap
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A numerical estimate gives Ly = 1500 km. The 1500-
km distance on the core surface corresponds to 25°. Let
us estimate the relation of the magnetic energy of the
field variation .
)
8T

(where 7 ~ 100 years is the characteristic time of the
field variation) to the kinetic energy,

K=pv*/2: MK =2

which corresponds approximately to the equidistribu-
tion hypothesis.

For comparison, we also consider the correlation func-
tion WP on the core surface (curve 2 in Figure 1a), con-
structed by analytically expanding the magnetic field
to the core surface using the spherical harmonic analy-
sis data (n = 14) of the method described in the pre-
ceding paragraph. The obtained solution is evidence
for a 120-fold enhancement of the secular variation field
and the presence of a correlation scale aLy = 600 km.
Note that the function W? is obtained as an alternat-
ing function, which contradicts its physical sense. This
entails larger errors in extrapolating the time-derivative
Gaussian coefficients ¢7* ) n* | and nonstationarity of the
secular variation field with time. Since a 600-km-scale
resolution requires a Gaussian series with n > 18, the
obtained solution is rather crude. Note that in the first
of the methods proposed above, the high-frequency in-
formation on the Earth’s surface (essentially the most
error-prone) was filtered in constructing the correlation
function sz. Therefore the solution on the Earth’s sur-
face WO, too, has a lower amplitude and a larger cor-
relation scale than the W° obtained from the spherical
harmonic analysis. .

Let us compare the obtained correlation function W?°
with the model results of Kliorin et al. [1988]. The hori-
zontal plateau of curve 3 in Figure 1a may correspond to
an unresolved (considering the accuracy of input data)
correlation scale. A scale of the order of 100 km may
exist and still make no appreciable contribution to the
observed field on the Earth’s surface. Note that the nor-
malization adopted in Figure 1a fails to adequately char-
acterize the properties of the correlation functions WP
and W°. Therefore we suggest another normalization,
namely, at a defined unit correlation function H,, and
H,,, respectively, on the Earth’s surface (see Figure 1b).
Now a portion p € (15 — 25°) is seen to exist, where
the functions differ only slightly from one another. The
reconstructed correlation function W0 is close to the-
oretical values, beginning with distances greater than
Lw (Figure 1b). Thus the obtained value of Ly can
be considered an upper bound on the correlation scale
on the Earth’s core surface. Note that Ruzmaykin et al.
[1989] hold this scale to correspond to the magnetic loop
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length ! ~ 1700 km. The 100-km scale on the core sur-
face corresponds to an angular distance of 1.5°. Reso-
lution of such scales requires using Gaussian coefficients
grt, nt with numbers n greater than 180° : 1.5° ~ 120,
which means that the magnetic field magnitude should
be far greater than in characteristic fields with scales
of 10% km. Since the magnitude of small-scale fields is
substantially restricted by the equidistribution hypoth-
esis, the methods proposed above fail to discern 100-km
scales.

Conclusions

The obtained results are evidence for irregularities of
the magnetic field in the Earth’s liquid core, with a
characteristic scale not over Ly ~ 1500 km, which does
not contradict the existence of structures having smaller
scales but featuring an amplitude not high enough to be
measured on the Earth’s surface.
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