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ow), maps of
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its correlation characteristics. We will use this methodin the present study.One of the models explaining the random behaviorof the secular variation �eld is the 
uctuation dynamomodel [Ruzmaykin et al., 1989], which holds that a ran-dommagnetic �eld can be generated in the random 
owof conductive medium with Rm � 102. Within thismodel the simplest characteristics of the random �eldare its correlation functions. Kliorin et al. [1988], usingasymptotic methods, constructed correlation functionsof a random magnetic �eld in a uniform, isotropic, tur-bulent medium that were determined by a single param-eter, the magnetic Reynolds number Rm. Pilipenko andSokolov [1991a, b] and Sokolo� and Zinchenko [1992]studied the tensor of a random magnetic �eld and, us-ing asymptotic methods, investigated its propagationthrough a two-dimensional layer of vacuum, and Reshet-nyak et al. [1993] constructed correlation functions ofthe secular variation �eld from observational data [Lan-gel et al., 1982]. The obtained qualitative agreementwith the theoretical model is far from adequate becauseof the instability of the inverse problem to the low dis-turbances in the input data, and therefore a numericalsolution of the problem is required. The possibility ofsolving the inverse problem not for the magnetic �elditself but rather for its correlation functions with al-ready smoothed random errors also leads to enhancedaccuracy.In this study, we attempted to solve the inverse prob-lem through the de�nition of the autocorrelation func-tion for the normal component _Hzz of the secular varia-tion �eld _H on the Earth's liquid core surface, using thedata of Langel et al. [1982] and Reshetnyak et al. [1993](the dot mark means the time derivative). The obtainedresult is compared with an analogous result obtained byextrapolation of the �eld itself up to the core, and thefocuses of the secular variation on the core surface areshown to have a scale that is substantially larger thanthe �eld tube cross-section dimension, with which Ruz-675



676 reshetnyak: characteristics of the secular variation fieldmaykin et al. [1989] intended to identify the focuses.Autocorrelation Function of a RandomMagnetic FieldLet the secular variation �eld _H induced by con-vective 
ows at the core-mantle boundary be random[Ruzmaykin et al., 1989]. For the sake of simplicitywe approximate the core-mantle interface by a surface�(z = 0). Because of the boundary conditions for _H,only the normal �eld component H0z is not zero on thecore surface �. Assume further that the distribution ofthe component H0z is uniform. It can then be describedusing a correlation function that depends only on themodulus of distance between points on the � surface:H0zz(�) = hH0zH0z i (1)where the angular brackets denote the statistical aver-aging and � is the distance between points on �. It is as-sumed that variations are not related to the mean �eld,so hH0z i = 0. As shown by Reshetnyak et al. [1993], theautocorrelation function Hzz at a distance L from thecore � is described by the expressionHzz(a; L) = L� Z� H0zz(�)�d�d'(R2a� + 4L2)3=2 (2)where R2a� = �2+a2�2�a cos' and also meets the con-dition following from the nondivergence of the magnetic�eld: 1Z0 H0zz(�)�d� = 0 (3)For the sake of convenience we will hereinafter denotethe distance between points on the core surface by � andthe distance on the Earth's surface by a.Kliorin et al. [1988] suggested a model of the auto-correlation function H0zz, a random magnetic �eld ina uniform, isotropic, conductive medium. In accor-dance with the asymptotes given, the minimum valueof H0zz �= �Rm�5=4, and the distance �1 at which thefunctionH0zz(�1) = 0:8H0zz(0) is of the order of Rm�1=2;in this context, Rm = lv=�, where l = 1700 km is thesize of a convection cell, v = 0:1 cm s�1 is the velocityof density convection, � = 2� 104 cm2 s�1 is the mag-netic di�usion coe�cient. At Rm �= 103 the minimumwill amount to �= 2�10�4 of the amplitude of the func-tionH0zz. Reconstruction of the correlation function of arandommagnetic �eld on the core surface is expedientlycarried out in terms of the function W 0� determined bythe relationshipW 0�(�) = 6�2 �Z0 H0zz(�)�d� (4)

According to (3), W 0� is a monotonically decreasing andalways positive function. In view of (4), (2) takes theformHzz(a; L) = L2� Z� W 0�(�)�2(� � a cos')�d�d'(R2a� + 4L2)5=2 (5)Figure 1a shows a family of functions W 0� for the rangeof values of Rm = 102 � 104. The corresponding fam-ily of curves Hzz on the Earth's surface is shown inFigure 2. Figure 3 shows the magnetic Reynolds num-ber Rm dependence of the correlation function Hzzwhich can be described by the formula Hzz(0) = 2 �10�3Rm�0:8 atH0zz(0) = 1. (De�ned on the Earth's sur-face was a model, normalized to its maximumvalue, au-tocorrelation function H0zz(0) [Ruzmaykin et al., 1989]as a function of Rm).Hereinafter, we will solve the inverse problem: fromthe prescribed function Hzz on the Earth's surface, cal-culated by experimental data [Pilipenko and Sokolov,1991b]; we will �nd the functionW (0;�) on the Earth'sliquid core surface.Observational DataReshetnyak et al. [1993] suggested an algorithm forconstructing correlation functions of the secular vari-ation �eld on the Earth's surface and, in particular,the autocorrelation function _Hzz, equal by de�nitionto h _Hz _Hzi, from the observational data of Langel etal. [1982]. The function was constructed on the as-sumption of a spheric symmetry of the correlation func-tions _Hij, so that these depend only on the distance be-tween points a. The algorithm is essentially as follows:One randomly takes a couple of points on the sphere,such as to uniformly cover the sphere all over its area.Then, using a spherical harmonic analysis, one com-putes the components of the secular variation �eld _Hat these points and constructs the correlation functions_Hij(a) therewith. Unlike Tikhonov and Arsenin [1979],in computing the functions _Hij at point a, the numberof points is de�ned from the condition that the mediandistance between these be not less than the distance a.This correction leads to a more realistic estimation oferrors in _Hij. The component _Hzz, normalized to themaximum value 4:8� 103 (nT/year)2, and its standarddeviation are shown in Figure 2.Note that relationship (3) is obtained, �rst, for themagnetic �eld itself and not for its time derivative and,second, on the assumption of a two-dimensional non-conductive mantle. As for the former condition, it isexpanded to the case of secular variation by virtue ofnondivergence of the �eld _H. Let us consider in moredetail the twodimensional mantle condition. Substitut-ing into (2) _Hzz and _H0zz for Hzz and H0zz, respectively,
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Figure 1. (a) Autocorrelation functions normalized to their maximum value and standarddeviation for curves 2 and 3 on the Earth's liquid core surface. Curve 1 indicates a familyof model functions W 0 depending on the magnetic Reynolds numbers Rm = 102, 103, 104;curve 2 indicates W rest calculated by analytically expanding the secular variation �eld to thecore surface; and curve 3 indicates W 0 obtained by solving the integral equation (9) followed bytransformation (10). (b) Nonnormalized autocorrelation functions on the liquid core surface ata de�ned unit correlation function on the Earth's surface is shown. Curve 1 indicates a family ofmodel functions W 0 depending on the magnetic Reynolds number Rm = 102, 103, 104; curve 2indicates W 0 obtained by solving the integral equation (9) followed by transformation (10).
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Figure 2. Autocorrelation functions and the standard deviation for curve 2 (Figure 1) on theEarth's surface. Curve 1 indicates a family of curves _Hzz at a family of _W 0 de�ned on thecore surface (Figure 1a and curve 1) for the magnetic Reynolds numbers Rm = 102, 103, 104;curve 2 indicates Hzz calculated from experimental data [Pilipenko and Sokolov, 1991b; Sokolo�and Zinchenko, 1992].and integrating over the variable a yields1Z0 H0zz(a)ada = 1Z0 H0zz(�)�d� (6)Thus condition (3) is invariant relative to parallel trans-port and is valid on any plane �1 parallel to the plane� of the core-mantle interface and found at a distanceL therefrom. Numerically solving (6) by using observa-tional _Hzz data yields�1 = 1Z0 _Hzz(a) a da� 1Z0 _H0zz(a) a da = �0:5where the point R is determined from the condition_Hzz(R) = 0. The error �1 characterizes the error in thetwo-dimensional model (2). Condition (6) and �1 makeit possible to signi�cantly con�ne the class of functions� 3 Hzz, wherein the solution is sought. For a spherean analogue to (3) is�Z0 _H0zz(') sin'd' = 0 (7)Unlike (3), where the function _H0zz was considered inan unlimited, uniform, isotropic space, relationship (7)takes into account the transition to a real, spherical core

of the Earth. In this context the element of area �d� in(3) changes to sin'd'.A numerical estimation yields�2 = �Z0 _H0zz(') sin'd'= �Z0 _H0zz(') sin'd' = �0:05which is in magnitude far less than �1, where point � isdetermined from the condition _Hzz(�) = 0.Since the condition of positive W 0� is satis�ed only at�1 � 0 we will introduce a new function W 0S , as in (4)W 0S (�) = 6Rc�2 �Z0 H0zz(�) sin� �Rc� d� (8)where integration is carried out up until �max = �Rcand Rc is the Earth's liquid core radius. The functionW 0S , thus introduced, is positive and monotonically de-creasing. Substituting (8) into (2) yields an equationfor W 0S , similar to (5):_Hzz(a; L) = � 16Rc ZS _W 0S(�)�2sin (�=Rc)K(�; a; L)�d�d' (9)where K(�; a; L) = 1R3=2a� �
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Figure 3. Dependence of the amplitude of the autocorrelation function Hzz(0) on the Earth'ssurface on the magnetic Reynolds number Rm.��1� �Rc cot� �Rc�� 3�(� � a cos')Ra� �The change from _W 0S to _W 0� can always be performed,using (4) and (8), by formula_W 0�(�) = _WS�Rc sin(�=R)� (10)� 1Rc�2 �Z0 _W 0S(�)�2sin(�=Rc) �1� �Rc cot� �Rc��d�The limiting change at �max ! 0 yields _W 0� ! _W 0S .Inverse ProblemThus the problem of de�ning a spatial autocorrelationfunction _W 0� of the secular variation �eld on the coresurface has been reduced to solving (9) for _W 0S withsubsequent transformation (10). Equation (9) is a �rst-order Fredholm equation and belongs to the class ofill-posed problems, where a small disturbance of inputdata on _Hzz leads to a great change in solving _W 0S . Inthe operator form, (9) can be represented as _Hzz =Â _W 0S , where Â is a linear, quite continuous operatorin a certain in�nite-dimensional functional space. As isshown, for instance, by Tikhonov and Arsenin [1979],the operator Â�1, which is reverse to the operator Â,does not show continuity for the Fredholm equation ofthe �rst order, whereby (9) requires regularization forits solution [Tikhonov and Arsenin, 1979].

Stable approximations for solving ill-posed problemsare based on the use of additional information aboutthe solution sought. In our case, it is known a priorithat the rigorous solution belongs to a compact set. Inthis case, the inverse operator Â�1 turns out to be con-tinuous, and a uniform convergence of a sequence ofapproximations to the rigorous solution of the problemis guaranteed. Tikhonov et al. [1990] have shown thatthe information on the rigorous solution being mono-tonic and limited is enough for the solution to be statedas belonging to a compactum. The function W 0S meetsall these requirements.To solve (9), we used the method of conjugate gra-dients with mapping to a nonnegative set. Figure 1ashows the obtained solution of W 0� and its standard de-viation. Numerical estimates show that within the ac-curacy of initial data, transformation (10) introduces nosigni�cant changes in going from _W 0S to _W 0�. The am-plitude of the function W 0� exceeds 1:8� 103 times theamplitude of the function _Hzz on the Earth's surface.Since, according to (8), at�! 0; _H0zz(�) �= 13 _W 0�(�); _H0zz(0) �= 630 _Hzz(0)which is equivalent to a 25-fold enhancement of the rmsmagnitude of the �eld on the surface of the core. Let asintroduce an integral scale _W 0:LW = 1= _W 0(0) 1Z0 _W 0(�)d�



680 reshetnyak: characteristics of the secular variation fieldA numerical estimate gives LW �= 1500 km. The 1500-km distance on the core surface corresponds to 25�. Letus estimate the relation of the magnetic energy of the�eld variation M = _Hzz(0)8� �2(where � ' 100 years is the characteristic time of the�eld variation) to the kinetic energy,K = �v2=2 :MK �= 2which corresponds approximately to the equidistribu-tion hypothesis.For comparison, we also consider the correlation func-tion _W 0 on the core surface (curve 2 in Figure 1a), con-structed by analytically expanding the magnetic �eldto the core surface using the spherical harmonic analy-sis data (n = 14) of the method described in the pre-ceding paragraph. The obtained solution is evidencefor a 120-fold enhancement of the secular variation �eldand the presence of a correlation scale aLW = 600 km.Note that the function _W 0 is obtained as an alternat-ing function, which contradicts its physical sense. Thisentails larger errors in extrapolating the time-derivativeGaussian coe�cients _gmn , _nmn , and nonstationarity of thesecular variation �eld with time. Since a 600-km-scaleresolution requires a Gaussian series with n � 18, theobtained solution is rather crude. Note that in the �rstof the methods proposed above, the high-frequency in-formation on the Earth's surface (essentially the mosterror-prone) was �ltered in constructing the correlationfunction _Hzz. Therefore the solution on the Earth's sur-face _W 0, too, has a lower amplitude and a larger cor-relation scale than the _W 0 obtained from the sphericalharmonic analysis.Let us compare the obtained correlation function _W 0with the model results of Kliorin et al. [1988]. The hori-zontal plateau of curve 3 in Figure 1a may correspond toan unresolved (considering the accuracy of input data)correlation scale. A scale of the order of 100 km mayexist and still make no appreciable contribution to theobserved �eld on the Earth's surface. Note that the nor-malization adopted in Figure 1a fails to adequately char-acterize the properties of the correlation functions W 0and _W 0. Therefore we suggest another normalization,namely, at a de�ned unit correlation function Hzz and_Hzz, respectively, on the Earth's surface (see Figure 1b).Now a portion � 2 (15 � 25�) is seen to exist, wherethe functions di�er only slightly from one another. Thereconstructed correlation function _W 0 is close to the-oretical values, beginning with distances greater thanLW (Figure 1b). Thus the obtained value of LW canbe considered an upper bound on the correlation scaleon the Earth's core surface. Note that Ruzmaykin et al.[1989] hold this scale to correspond to the magnetic loop
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