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Using a rotating flat layer heated from below as an example, we consider effects which lead to
stabilizing an exponentially growing magnetic field in magnetostrophic convection in transition
from the kinematic dynamo to the full non-linear dynamo. We present estimates of the energy
redistribution over the spectrum and helicity quenching by the magnetic field. We also study the
alignment of the velocity and magnetic fields. These regimes are similar to those in planetary
dynamo simulations.
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1. Introduction

Many physical processes can be referred to threshold phenomena, when the increase of
the governing parameter leads to the appearance of an increasing solution. Such an
example is thermal convection, when the growth of thermal instability starts at a certain
critical value of the Rayleigh number Racr, which characterizes the amplitude of the
heat sources (Chandrasekhar 1961). The same situation occurs if magnetic field B is
generated in a conductive medium: the increase of the convection intensity,
parameterized by the magnetic Reynolds number Rm, can lead to an exponentially
growing solution (Moffatt 1978). After that magnetic field grows up to the moment
when it starts to have an effect on the flow. As in many astrophysical objects Rm is very
large, providing quite extended spectra of the fields, it is generally believed that this
influence need not lead to a direct suppression of fluid motions. This statement is
supported by the fact that in some cases transition from the non-magnetic to the
magnetic state can be accompanied by the growth of Reynolds numbers. In other
words, knowledge of Rm is not sufficient to answer the question whether the magnetic
field will grow further or not.

The most widespread point of view is that the magnetic field causes such a
reconstruction of the flow that the generation of the magnetic field becomes less
efficient. However, the visual control of the flow does not reveal an essential
change (Jones 2000), which can be due to the force-free nature of the magnetic
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field configurations: j r � Bð Þ � BjLB=B
2 � 1; where LB is the energy-carrying scale of

the magnetic field.
One of the explanations of the saturation mechanism is offered in Berger (1984) and

Brandenburg and Subramanian (2005), where saturation is connected with the scale

separation of the generated magnetic field due to conservation of magnetic helicity.

In this article we study, on an example of the dynamo in a rapidly rotating flat layer

heated from below, how such a magnetic energy redistribution over the spectra takes

place in geostrophic systems. Our simulations demonstrate the occurrence of the

magnetic �M-effect which can suppress the total �-effect and lead to a saturated

dynamo.
The other point is the correlation of velocity and magnetic fields (so-called cross

helicity). It appears that a saturated velocity field can still lead to an exponentially

growing magnetic field, provided that this new artificial magnetic field does not

contribute to the Lorentz force. It was first noticed by Cattaneo and Tobias (2009), see

also their KITP’s conference video presentation. This problem has now become the

subject of various discussions (Tilgner 2008, Tilgner and Brandenburg 2008, Schrinner

et al. 2009). We also present some results concerned with the magnetostrophic regimes

close to those in geodynamo simulations that are also unstable for large Rm.

2. Dynamo equations

The geodynamo equations for an incompressible fluid (r �V¼ 0) in a layer of height L

rotating with angular velocity � in a Cartesian system of coordinates (x, y, z) in its

traditional geodynamo dimensionless form can be expressed as follows:

@B

@t
¼ r � V� Bð Þ þ q�1�B;

EPr�1
@V

@t
þ V � rð ÞV

� �
¼ �rP� 1z � Vþ RaT z1z þ r � Bð Þ � Bþ E�V;

@T

@t
þ V � rð Þ Tþ T0ð Þ ¼ �T:

ð1Þ

The velocity V, magnetic field B, pressure P and the typical diffusion time t are

measured in units of �/L,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2����

p
, ��2/L2 and L2/�, respectively, where � is the thermal

diffusivity, � is the density, � the permeability, Pr¼ �/� is the Prandtl number,

E¼ �/(2�L2) is the Ekman number, � is the kinematic viscosity, � is the magnetic

diffusivity, and q¼ �/� is the Roberts number. Ra¼�g0�TL/(2��) is the modified

Rayleigh number, � is the coefficient of volume expansion, �T is the unit of

temperature, g0 is the gravitational acceleration, and T0¼ 1� z is the heating from

below. The problem is closed with periodic boundary conditions in the (x, y) plane. In

the z-direction, we use simplified conditions (Cattaneo et al. 2003): for T and V: T¼ 0

(heating from below), stress-free for V: Vz¼ @Vx/@z¼ @Vy/@z¼ 0, and the

pseudo-vacuum boundary condition for B: Bx¼By¼ @Bz/@z¼ 0 at z¼ 0, 1. System

(1) was solved using the pseudo-spectral Fortran-95 MPI code (Reshetnyak and Hejda

2008) on cluster PC computers using grids N3, N¼ 64.
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3. Results of modelling

3.1. General properties

We consider two regimes that differ in Rayleigh and Roberts numbers:

R1: Ra¼ 4� 102, Pr¼ 1, E¼ 2� 10�5, q¼ 10.
R2: Ra¼ 1� 103, Pr¼ 1, E¼ 2� 10�5, q¼ 3.

To get the final saturated dynamo, we started from a pure convection state without
the magnetic field. At time t¼ 0.35, we injected a magnetic field of small amplitude.
After an intermediate kinematic regime with exponential growth of magnetic energy
EM¼B2/(2Ro), we arrive at a quasi-periodic state with kinetic, EK¼V2/2, and
magnetic, EM, energies of the same order of magnitude for R1 (figure 1), and at the
state with EK4EM for R2 (figure 2), where a smaller value of q was used.

Both regimes correspond to the geostrophic (magnetostrophic) state, see typical
cyclonic structures of the temperature fluctuations T and kinetic energy EK in figure 3
for R2. The diameter of the cyclones depends on the Ekman number as dc�LE1/3
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Figure 1. Regime R1. Evolution of the mean over the volume fluctuations of the squared temperature T 2,
kinetic and magnetic energies EK, EM, and kinetic helicity 	H, |	H|.
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Figure 2. The same as in figure 2 for regime R2.

Figure 3. Distribution of temperature fluctuations T and kinetic energy EK for regime R2.
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(Busse 1970). In both cases the transition from the kinematic regime to the full dynamo
was accompanied by an increase of the temperature fluctuations T 2.

On the other hand, the behaviour of the kinetic energy for the two regimes was
different: for R1 the growth of the magnetic field leads to an increase in
convection intensity (EK becomes larger) and for R2 to a decrease. The
corresponding Reynolds numbers are Re¼ 200 (kinematic dynamo regime) and
Re¼ 420 (regime with saturation) for R1 and Re¼ 1500, 1100 for R2. For the
observed geostrophic state the ratio of the nonlinear term in the Navier–Stokes
equation to the Coriolis force, the Rossby number, Ro¼EV is quite small:
Ro¼ 4.3� 10�3, 8.4� 10�3 for R1 and Ro¼ 3.0� 10�2, 2.2� 10�2 for R2. One of
the explanations of the growth of Re for regime R1 is that the magnetic field
disturbs the regular geostrophic flow for R1 and helps the generation of the
magnetic field. The total energy EKþEM also increases. Regime R2 corresponds to
the more disturbed state, and the kinetic energy is reduced to the amount of
increase of the magnetic energy. This scenario usually takes place for large
Reynolds numbers. Note also that, while for R1 the increase of T2 corresponds to
the increase of the Archimedean work RaTVz, for R2 the work decreases due to
the chaotization of the fields. The behaviour of the kinetic helicity 	H¼V � curlV
as a whole copies the evolution of the kinetic energy. The dispersion of 	H

increases when the magnetic field reaches its saturated value.

3.2. Spectra

The maximum of the kinetic energy spectra for R1 corresponds to the horizontal scale
of the cyclones kc¼ 1/dc (figure 4(a)). The magnetic field slightly decreases this
maximum and kinetic energy increases. The relative part of the kinetic energy on the
large scales also increases.

The growth of the magnetic field during transition from the kinematic dynamo state
to saturation state is accompanied by an increase of the magnetic field on large scales
(figure 4(b)). The first mode which reaches saturation is the mode with k� 10. The
other modes still grow filling the spectra for EM. This behaviour is the same for both the
regimes R1, R2. The behaviour of the kinetic energy on the large scales is a little bit
different for R2 (figure 4(c)), where we observe a decrease of EK, which corresponds to
the breakup of the horizontal rolls by the magnetic field. The maximum for EK at k¼ 1
then disappears.

The inhomogeneous growth of the magnetic field for different k is quite important for
understanding the saturation mechanism of the magnetic field. The growth of the
magnetic field in the kinematic state takes place at convective times 
k� (kVk)

�1,
which decreases with k. According to Kazantsev (1968) the spectrum of the magnetic
field is EM� k3/2 for the non-rotating turbulence, and the maximum of the magnetic
field is then close to the dissipative scales. In our regime, the maximum of EK at k¼ kc
is more important for the magnetic field distribution, and the modes with
k� kc reach saturation level at first. We argue that this regime is closely
connected with the occurrence of the coherent structures discussed in Tobias and
Cattaneo (2008).

The observed redistribution of the magnetic field over the scales is closely related to
the mean over the volume magnetic helicity 	M¼A �B for Rm!1 (Berger 1984),
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where A is the vector potential of the magnetic field B¼ curlAy. The alternating-sign

quantity 	M is a measure of the linkage of the magnetic field lines with one another

(Moffatt 1978). After some algebra with the induction equation, one arrives at the

equation for the mean over the volume fields (Berger 1984, Brandenburg and

Subramanian 2005)

D

Dt
A � B ¼ �R�1m J � Bþ�; ð2Þ

where J¼ curl B is the current and � is the flux of 	M through the boundary. �¼ 0 for

the fully periodic boundary conditions as well as for the super conductive boundaries.

The other scalar product 	J ¼ J �B is the so-called current helicity.
Then, after time t�Rm� 1, one has saturation regime D/Dt¼ 0, with

J � B ¼ �j � b; A � B ¼ �a � b; ð3Þ

where the decomposition of field F into the mean and fluctuating parts was used:

F ¼ Fþ f (Brandenburg and Subramanian 2005). In other words, after the kinematic

regime no changes of the magnetic field would change the total magnetic and current

helicities. Any local change is possible only due to the redistribution of 	M, 	J over the

scales. Of course, this approach becomes more complicated if the mean helicities change

sign in space and the ideas on scale decomposition are applicable to the space domain

with the same sign of helicity.
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Figure 4. Spectra of the kinetic and magnetic energies for regime R1 (a–b) and R2 (c–d). The solid line
correspond to the saturated dynamo, squares to the convection without magnetic field, and crosses to the
kinematic dynamo regime.

yLarge Rm is typical for many astrophysical bodies which possess their own magnetic field.
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The application of the pseudo-vacuum boundary conditions, which provides � 6¼ 0 at
the boundaries, is more tricky. These conditions leads to the increase of the energy of
the magnetic field at large scales (Brandenburg and Sandin 2004) and break the
catastrophic quenching predicted by Vainshtein and Cattaneo (1992) and observed for
the fully periodic boundary conditions (Hughes et al. 1996, Brandenburg and
Subramanian 2005). There is also an indication of catastrophic quenching for the
mean-field dynamo models with periodic boundary conditions (Cattaneo and Hughes
1996). According to this scenario the large-scale magnetic field B0 would be saturated at
B2
0 � R�1m b2, where b2� v2 are the small-scale field energies.
In our simulations with pseudo-vacuum boundary conditions, we still observe some

decrease of the magnetic field intensity (figures 1 and 2): the ratio of the magnetic to
kinetic energies decreases from R1 to R2, which should be explained by a decrease of
the Roberts number q rather than by catastrophic quenching. In figure 5 we also
observe that the magnetic helicity on the large scales increases sufficiently after
transition to the saturated regime.

Let us recall that, according to the mean field dynamo theory, there is connection
between the kinetic and current helicities and hydrodynamic �H- and magnetic
�M-effects for short correlation times (Pouquet et al. 1976, Zeldovich et al. 1983)

�H ¼ �
v � !=3; �M ¼ 
j � b=3; ð4Þ

where u¼ curl v is the vorticity and 
 is a correlation time. In practice (Zeldovich et al.
1983), these formulas are applicable when the typical time of the large-scale magnetic
field growth 
L is larger than the turnover kinetic time 
t¼ l/v(l ), where v(l ) is a velocity
on scale l. A rough estimate of 
L, using jump of the magnetic energy at the kinematic
regime R1 (figure 1), yields 
L� 10�2, which is already smaller than 
t� 1/(Rekc)� 10�3

(here we supposed that the kinetic energy is concentrated in the vicinity of kc). Taking
into account that the mean magnetic field grows slower than the small-scale field, we
find that 
L is even much larger than the above estimate (a similar situation for regime
R2 takes place).

The total �-effect is then

� ¼ �H þ �M: ð5Þ

If the signs of the helicities are the same, the total �-effect is reduced (�M!��H) and
the magnetic field stops growing. The latter is well observed in our simulations,
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1 10
|B
·cu

rl
B

∗ |
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Figure 5. Spectra of the current helicity for regime R1. The solid line corresponds to the saturated dynamo,
circles to the kinematic dynamo regime.
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figures 6 and 7, where 	CJM40 for z50.5 and 	CJM50 for z40.5. All the three
helicities 	CJM have the same signs, however, 	J is more rugged due to the
contribution of the small-scale fields.

3.3. Energy fluxes in the wave space

Energy redistribution over the spectra is closely related to the fluxes in wave space.
In spite of the fact that the final saturated state is quasi-stationary, there are still fluxes
in wave space. This happens because the scales where energy is generated and dissipated
are different (Rose and Sulem 1978). For the simplest cases, such as 3D Kolmogorov’s

–2µ106

–106

0

106

2µ106

0 0.2 0.4 0.6 0.8 1

z

(a)

–2µ106

–106

0

106

2µ106

0 0.2 0.4 0.6 0.8 1

z

(b)
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turbulence, kinetic energy goes from the scale of the force to the dissipative scale. Here
we repeat the results of Reshetnyak and Hejda (2008) and Hejda and Reshetnyak (2009)
and discuss the difference between energy fluxes of kinematic dynamo regime and the
saturated regime.

Consider the kinetic energy flux in wave space through wave number k:
T KðkÞ ¼ �

@

@k
, where V<ðrÞ ¼

P
jPj�k

bVP e
iPr is a low-frequency counterpart, andR1

k¼0 T KðkÞ dk ¼ 0.

Using relation curl (V�B)¼�(V � r) Bþ (B � r) V, the magnetic energy flux T M(k)
can be decomposed into advective and generating parts T M¼T N�T L,R1
k¼0 T NðkÞ dk ¼ 0. The latter is equal to minus the work of the Lorentz force.
The fluxes of kinetic energy T K are presented in figures 8(a) and 9(a). For k� kc the

inverse cascade of kinetic energy is observed: the cyclones are the sources of the energy.
Here energy is distributed to the large scales (k5kc, T K40, inverse cascade), as well as
to the small scales (k4kc, T K50, direct cascade) where it dissipates. The magnetic field
causes some blurring of the maxima and shift of T K to the large-scale region.

In contrast to T K, T M includes not only an advective term, but also a generating
term. It appears that the integral of T M over all k is positive. Moreover, T M is positive
for any k, figures 8(b), 9(b), i.e. the magnetic field is generated on small scales. Position
of the maximum of T M is close to the maximum in the spectrum of EM. The form of T M

is the same for the small magnetic field during kinematic regime and for the saturated
mode. Let us consider where the magnetic energy comes from: Is the energy transferred
from other scales to some certain k, or is it generated localy? Generating flux �T L is
shown in figures 8(c) and 9(c). Its maximum is close to the minimum of T K (R1), i.e. the
kinetic energy is transformed to the energy of the magnetic field. Except for a small
region at high k, there is always an inverse cascade of magnetic energy �T L40.
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convective term in the induction equation TN, regime R1. The solid line corresponds to the saturated dynamo
and crosses to the kinematic dynamo regime.
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Note that the amplitudes of the maximum of �T L and T M are sufficiently different.
That is because �T L and T N are anti-correlated (figures 8(d) and 9(d)). This means that
advective term T N50 transports the major part of the energy to the dissipative scale.

Transition to the saturated state for R1 does not change the form of the flux’s curve
substantially. It only increases the amplitudes of �T L and T N, thus increasing the
synchronization of the fluxes �T L and T N. The maxima of �T L and T N shift to the
large scales for the full dynamo regime. For the R2-regime saturation changes the flux
of the magnetic energy more efficiently. For the kinematic regime, the flux was more or
less homogeneous from the small to large scales. For the saturated state, cyclones at kc
connected with decrease of EM/EK provide the main contribution to �T L. The relative
strength of the total flux of the magnetic energy due to the �T L term to the main scale
remains at the same level. This flux can be related to the �-effect.

4. Alignment of the fields

In discussing z-profiles of the fields, we have not yet taken into account the importance
of the spatial-temporal correlation of fields V and B. In this connection an interesting
question arises: Can an already quenched velocity field in the dynamo model generate
an exponentially growing magnetic field or not (Tilgner and Brandenburg 2008,
Cattaneo and Tobias 2009)? The only one difference between this new passive magnetic
field and the original one is that the new field does not contribute to the Lorentz force.
It appears that the answer depends on the spectrum of the magnetic field and its time
behaviour. Usually, if one has only one excited magnetic field mode for the saturated
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Figure 9. The same as in figure 8 for regime R2.
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regime (Tilgner and Brandenburg 2008), the new passive magnetic field is stable. This

statement is supported by simulations in the sphere (Tilgner 2008, Schrinner et al. 2009),

where the dipole mode dominates for low Rossby number Ro. For the multi-mode

regime (which is the case for the large Rayleigh number) the situation is different: the

new magnetic field bB grows exponentially (Cattaneo and Tobias 2009). There is an

indication that the threshold for such a different behaviour of bB in time in the sphere

takes place at Ro¼ 0.12 (Schrinner et al. 2009). Here we consider what happens in the

flat layer dynamo for regimes R1, R2 with quite extended spectra, adding a new

induction equation for bB to the system (1):

@B

@t
¼ curl V� Bð Þ þ q�1�B;

EPr�1
@V

@t
þ V � rð ÞV

� �
¼ �rP� 1z � Vþ RaT z1z þ r � Bð Þ � Bþ E�V;

@T

@t
þ V � rð Þ Tþ T0ð Þ ¼ �T;

@bB
@t
¼ curl V�bB� �

þ q�1�bB:

ð6Þ

For both the regimes we observe distinct behaviours of B2 and bB 2
(figure 10).

Although the same velocity field V was used in both the equations for B andbB , the new

artificial magnetic field starts to grow exponentially. We are ready to conclude that

temporal synchronization of the fields in space and time is crucial for stabilization.

Field bB is certainly less synchronized with velocity field V because the Lorentz force

based on bB has been omitted. This idea is supported by our simulations of the

autocorrelation functions of the magnetic and velocity fields Corr(Vi,Bi), CorrðVi; bBiÞ

calculated over half of the volume z� 0.5 (figures 11 and 12). Evidently for both the

regimes R1, R2 the correlation for bB is less than for field B. However, the correlation is

quite small for both the regimes due to the stochastic nature of the small scale fields and

does not exceed a few percent, reducing with increasing Rm. The reduction of

correlation for all the components corresponds to the reduction of alignment of fields V

and B, when the Lorentz force is omitted. The real magnetic field B has stronger

alignment. We adopt the explanation given by Cattaneo and Tobias (2009), Tilgner and
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Figure 10. Evolution of the magnetic energies B2/(2Ro) (solid line) and bB2=ð2RoÞ (circles) for regimes R1 (a)
and R2 (b).
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Figure 11. Evolution of the autocorrelation functions for regime R1. The thin line corresponds to the
original magnetic field B and the line with circles to bB.
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Figure 12. The same as in figure 11 for regime R2.
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Brandenburg (2008) that the instability of bB is due to the difference in the stability
criteria for the full dynamo equation with quenched Vq, and single induction equation
with given Vq.

5. Discussion

The transition from kinematic to saturated dynamo regime in cyclonic convection is
accompanied by the reconstruction of the flow as well as of the magnetic field.
In general, the change of the kinetic energy is not crucial: it can even increase during the
transition. More important is the reconstruction of the flow patterns. The growing of
the magnetic field B from the quasi-stationary convective state with non-zero kinetic
helicity 	H(z) is defined by the leading eigen solution. This first mode grows up to the
level when the maximum of the spectra at k� kc reaches the saturated level close to the
equipartition value on this scale. The growth of field B then stops at kc. The small-scale
field produces the magnetic �M-effect which suppresses the total �-effect (5). According
to (3), the transition to the saturated regime requires an increase of the large-scale
magnetic field, which takes place at diffusion time t�Rm. Some change of the magnetic
energy flux in the wave-space is also observed. The long-term fitting to the saturated
regime is also predicted by the dynamical models of �-quenching (Kleeorin et al. 1995).
During this time the large-scale magnetic field still grows to the limit defined by the
restriction on the magnetic helicity conservation. The Lorentz force, which provides the
correlation of the velocity and magnetic fields V and B and their alignment, plays a
crucial role.
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