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Abstract

A 3-D kinematic geodynamo model in a sphere is considered. In contrast to the traditional spectral approach to

the problem, a new grid-spectral method is proposed. The 3-D magnetic ®eld and velocity ®eld are resolved in the

physical space for r- and y-coordinates, whereas the sin- and cos-decomposition is applied to the j-coordinate. The

computer code was tested by free-decay solutions, as well as by comparison with the results reported by other

authors. This work is the ®rst step of a project to study 3-D inviscid geodynamo models. Published by Elsevier

Science Ltd.

Keywords: Finite di�erences; Free decay modes; Asymmetric kinematic dynamo

1. Introduction

The geodynamo process of magnetic ®eld generation

occurs in the liquid spherical core of the Earth and is

described by the 3-D magnetohydrodynamic (MHD)

equations. Due to the complexity of these equations,

the approach to the problem is usually numerical. The

®rst models were kinematic, that is, with the ¯uid ¯ow

arbitrarily prescribed. The most frequently used

method was already outlined in the pioneering paper

of Bullard and Gellman (1954). It consists of de-

composition of the magnetic and velocity ®elds into

toroidal and poloidal parts and further expansion of

the components in terms of spherical harmonics. The

radial functions were either expanded in the series of

base functions (for example Bessel functions, Cheby-

shev polynomials) or resolved on a grid. The advan-

tage of this procedure is that the condition of non-

divergence is satis®ed automatically and the magnetic

®eld can easily be ®tted to an outer source-free poten-

tial ®eld. The method was used in many dynamo simu-

lations. Let us mention the 2-D kinematic models by

Roberts (1972), 3-D kinematic dynamos by Gubbins

(1973), Pekeris et al. (1973) or Dudley and James

(1989), 2-D hydromagnetic models by Hollerbach et al.

(1992), Hollerbach and Jones (1993) and also the

advanced 3-D hydromagnetic dynamo models by

Glatzmaier and Roberts (1995a, 1995b, 1996) and

Kuang and Bloxham (1997).

A di�erent approach to solve 2-D axisymmetrical

models was adopted by Jepps (1975). It keeps the res-

olution into toroidal and poloidal parts but the result-

ing equations are approximated by a ®nite-di�erence

scheme on a 2-D spherical grid in the meridional

plane. The approach was widely applied to the axisym-

metric hydrodynamic models in magnetostrophic ap-

Computers & Geosciences 26 (2000) 167±175

0098-3004/00/$ - see front matter Published by Elsevier Science Ltd.

PII: S0098-3004(99 )00077-1

p

Code available at http://www.iamg.org/CGEditor/

index.htm

* Corresponding author. Tel.: +420-2-6710-3339; fax:

+420-2-7176-1549.

E-mail addresses: ph@ig.cas.cz (P. Hejda),

rm@uipe.srcc.msu.su (M. Reshetnyak).



proximation (Braginsky, 1978; Braginsky and Roberts,

1987; Cupal and Hejda, 1989; Anufriev et al., 1995;

Jault, 1995), in which the inertial and viscous forces

were ignored in the bulk of the core and the velocity

components were obtained by integration along the ẑ-

axis. There are some indications that such models with

marked vertical structures in the velocity ®eld can be

solved more easily by ®nite di�erences than by the

spectral method. For example, the spectral solution of

Hollerbach et al. (1992) fell into a chaotic regime just

beyond the Ekman State breaking bifurcation, but the

®nite-di�erence calculations of the same model

obtained independently by Anufriev et al. (1995) and

Jault (1995) were able to follow further development

of the solution.

Whereas the above-mentioned magnetostrophic

models neglected the inner core e�ect, the method of

solution for the axisymmetrical model with an inner

core was developed by Anufriev (1994) and model cal-

culations were done by Anufriev and Hejda (1998).

An entirely new method was developed by Nakajima

and Roberts (1995). In this method, the grid points of

one set of coordinates in the meridional plane lie on

lines parallel to the axis of rotation and one curve of

the other set coincides with the surface of the core. By

this approach, the interpolation between spherical and

cylindrical grids is avoided and, at the same time, the

nonlocal condition on the magnetic ®eld at the surface

of the core can be easily implemented. The 3-D (asym-

metric) magnetic ®eld is represented by cylindrical

components.

In the present paper we draw on our previous good

experience with 2-D magnetostrophic models and keep

the spherical coordinates. The 3-D magnetic and vel-

ocity ®elds are represented by three spherical com-

ponents. The components are approximated by grid

values for r- and y-coordinates and sin- and cos- de-

composition is then applied to the j-variable. The

method is tested by free decay modes as well as by

comparison with kinematic dynamo models reported

by other authors.

2. Basic equations

The generation of a geomagnetic ®eld is described

by the induction equation:

@B

@ t
� r � �V� B� ÿ r � Zr � B �1�

where V is the velocity ®eld, which within the scope of

the kinematic dynamo considered in this paper is the

prescribed function of space coordinate r and time t,

and Z is the magnetic di�usivity which is usually con-

stant. The additional conditions are the free divergence

of the magnetic ®eld, B,

r � B � 0 �2�

and the incompressibility of the ¯uid,

r � V � 0: �3�

Vacuum boundary conditions for the magnetic ®eld

make up the complete problem.

It is well known that the case with V=0 can be

solved analytically by using the toroidal-poloidal de-

composition (Mo�att, 1978; Gubbins and Roberts,

1987; Backus et al., 1996; see also Section 6 of this

paper for details). At the same time, the solutions (the

so-called free decay modes) form a basis of the corre-

sponding functional space. It can be seen that the mag-

netic ®eld pertinent to the ®rst poloidal mode is

singular in the centre of the sphere. As it would cause

problems in the numerical solution, we changed to the

new variable b=rB which is no longer singular in the

centre.

Hereinafter we shall seek the solution in the follow-

ing form:

b�r,y,j,t� �

0
@ br
by
bj

1
A

�
XM
m�0

0
B@
bcrm
bcym
bcjm

1
CAcos mj�

0
BB@
bsrm
bsym
bsjm

1
CCAsin mj, �4�

where bc, bs are the functions of r, y and t and M is a

truncation level. The substitution of Eq. (4) into Eq.

(1) leads to the following equations for by- and bj-

components:

@by

@ t
� r2by ÿ

by

r2sin2y
�

2

r2
@br

@y
ÿ
2 cos y

r2sin2y

@bj

@j

� Ry, �5a�

@bj

@ t
� r2bj ÿ

bj

r2sin2y
�

2

r2siny

@br

@j
�
2 cos y

r2sin2y

@by

@j

� Rj: �5b�

The br-component will be obtained from the nondi-

vergence of the magnetic ®eld Eq. (2) (see Section 4).

Eqs. (5a,b) lead to the following system of di�eren-

tial equations:
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@bcym
@ t

� r2
1b
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ÿ
1
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m2

sin
2y
bcym ÿ

bcym

r2sin2y
�

2

r2

@bcrm
@y

ÿ
2m

r2
cos y

sin
2y
bsjm

� Rc
ym
, �6a�

@bsym
@ t

� r2
1b

s
ym

ÿ
1

r2
m2

sin
2y
bsym ÿ

bsym

r2sin2y
�

2

r2

@bsrm
@y

�
2m

r2
cos y

sin
2y
bcjm

� Rs
ym
, �6b�

@bcjm

@ t
� r2

1b
c
jm

ÿ
1

r2
m2

sin
2y
bcjm

ÿ
bcjm

r2sin2y

�
2m

r2sin y
bsrm �

2m cos y

r2sin2y
bsym � Rc

jm
, �6c�

@bsjm

@ t
� r2

1b
s
jm

ÿ
1

r2
m2

sin
2y
bsjm

ÿ
bsjm

r2sin2y

ÿ
2m

r2sin y
bcrm ÿ

2m cos y

r2sin2y
bcym � Rs

jm
, �6d�

with m=0, . . .M,

r2 � r2
1 � r2

2, �7�

r2
1 �

@ 2

@r2
�

1

r2sin y

@

@y

�
sin y

@

@y

�
, �8�

r2
2 �

1

r2sin2y

@ 2

@j2
, �9�

and R is the convective part of Eqs.(1) and (5a,b)

decomposed in the form of Eq. (4):

R � r�r � �V� b=r�� � �b � r�Vÿ r�V � r��b=r�: �10�

The free divergence of the ®elds was used in the last

equation. The following useful formulas for the system

of spherical coordinates can be applied

�b � r�V � �b � rVr ÿ �byVy � bjVj�=r�er

� �b � rVy � �byVr ÿ cot y bjVj�=r�ey

� �b � rVj � �bjVr � cot y bjVy�=r�ej,

�11a�

�V � r��b=r� � �V � r�br=r� ÿ �Vyby � Vjbj�=r�er

� �V � r�by=r� � �Vybr ÿ cot y Vjbj�=r�ey

� �V � r�bj=r� � �Vjbr � cot y Vjby�=r�ej:

�11b�

Then

R � �b � r�Vÿ r�V � r��b=r�

� �b � rVr ÿ V � r�br=r��er � �b � rVy

ÿ V � r�by=r� � �byVr ÿ Vybr�=r�ey � �b � rVj

ÿ V � r�bj=r� � �bjVr ÿ Vjbr � cot y�bjVy

ÿ Vjby�=r�ej

� �br
@Vr

@r
�

by

r

@Vr

@y
�

bj

r sin y

@Vr

@j
ÿ rVr

@br=r

@r

ÿ
Vy

r

@br

@y
ÿ

Vj

r sin y

@br

@j
�er � �br

@Vy

@r
�

by

r

@Vy

@y

�
bj

r sin y

@Vy

@j
ÿ rVr

@by=r

@r
ÿ

Vy

r

@by

@y

ÿ
Vj

r sin y

@by

@j
� �byVr ÿ Vybr�=r�ey � �br

@Vj

@r

�
by

r

@Vj

@y
�

bj

r sin y

@Vj

@j
ÿ rVr

@bj=r

@r

ÿ
Vy

r

@bj

@y
ÿ

Vj

r sin y

@bj

@j
� �bjVr ÿ Vjbr

� cot y�bjVy ÿ Vjby��=r�ej: �12�

To obtain the explicit formulas for Rc, Rs selection

rules similar to those of Bullard and Gellman (1954)

for decomposing spherical function are required.

Nevertheless, as the ®eld is being expanded only in the

j-variable, our selection rules will be simpler.

3. Selection rules

The idea is to obtain equations for truncated Four-

ier series of the product of two Fourier series. Let

f �
XM
m�0

fcmcos m� fsmsin m,

g �
XM
k�0

gckcos k� gsksin k,

�13�

then
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w � f � g �
XM
m�0

fcmcos m �
XM
k�0

gckcos k�
XM
m�0

fcmcos m

�
XM
k�0

gsksin k�
XM
m�0

fsmsin m �
XM
k�0

gckcos k

�
XM
m�0

fsmsin m �
XM
k�0

gsksin k: �14�

Equations for coe�cients wc, ws expressed in terms

of fc, fs, gc, gs are now required. After some simple

algebra one arrives at:

wc
0 �

1

2
� f c0g

c
0 �

XM
m�0

� f cmg
c
m � f smg

s
m��, for 0 < pRM:

wc
p �

1

2
�
XM
m�p

� f cmg
c
mÿp � f smg

s
mÿp� �

XMÿp

m�0

� f cmg
c
m�p

� f smg
s
m�p� �

Xp
m�0

� f cmg
c
pÿm ÿ f smg

s
pÿm��,

�15�

ws
0 � 0, for 0 < pRM:

ws
p �

1

2
�
Xp
m�0

� f cmg
s
pÿm � f smg

c
pÿm� �

XM
m�p

�ÿf cmg
s
mÿp

� f smg
c
mÿp� ÿ

XMÿp

m�0

�ÿf cmg
s
m�p � f smg

c
m�p��:

�16�

A similar analysis for w � f � g 0 leads to the follow-

ing results:

wc
0 �

1

2

XM
m�0

m� f cmg
s
m ÿ f smg

c
m�, for 0 < pRM:

wc
p �

1

2
�
XM
m�p

�mÿ p�� f cmg
s
mÿp ÿ f smg

c
mÿp�

�
XMÿp

m�0

�m� p�� f cmg
s
m�p ÿ f smg

c
m�p�

�
Xp
m�0

� pÿm�� f cmg
s
pÿm � f smg

c
pÿm��,

�17�

ws
0 � 0, for 0 < pRM:

ws
p �

1

2
�
Xp
m�0

� pÿm��ÿf cmg
c
pÿm � f smg

s
pÿm�

�
XM
m�p

�mÿ p�� f cmg
c
mÿp � f smg

s
mÿp�

ÿ
XMÿp

m�0

�m� p�� f cmg
c
m�p � f smg

s
m�p��:

�18�

Equations (15±18) were used to obtain coe�cients

Rc, Rs in Eq. (12).

4. Numerical scheme

In contrast to the toroidal±poloidal decomposition,

where the non-divergence is automatically satis®ed, in

this formulation we must take account of it. It is well

known that if the initial vector is non-divergent, the

exact solution of Eq. (1) preserves this property. In the

numerical solution there is the danger that the non-

divergence of the solution will deteriorate due to nu-

merical errors. It is, therefore, advisable to integrate

Eq. (1) only for two components and compute the

third component from the condition in Eq. (2). In con-

trast to Nakajima and Roberts (1995) who computed

j-component from Eq. (2), we have combined Eqs.

(6a±d) with the following formulae for br:

bmcr � ÿ
1

r sin y

�r
0

�
@

@y
�sin y bcmy � �mbsmj

�
dr, �19a�

bmsr � ÿ
1

r sin y

�r
0

�
@

@y
�sin y bsmy � �mbcmj

�
dr: �19b�

In fact, the solution of the kinematic dynamo could

be reduced to the eigenvalue problem. However, our

computer code is the ®rst step to the solution of the

hydromagnetic (nonlinear) dynamo and that is why we

have solved the parabolic problem. The ®nite-di�er-

ence numerical scheme with central-di�erence approxi-

mation of the 2nd order of accuracy was applied on

grid G � f�ri,yj �, i � 1, . . . ,N, j � 1, . . . ,K g, where

yj � � jÿ 1�hy, hy � p=�Kÿ 1� and the grid size in r

may be regular or irregular. The di�usions (second-

order derivative terms) in Eqs. (6a±d) were carried out

implicitly, whereas the terms with the ®rst-order de-

rivatives were treated explicitly. The corresponding sys-

tems of linear equations were solved by the Gauss±
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Seidel method. With the last r-layer the solution was

obtained from the vacuum boundary conditions.

5. Vacuum boundary conditions

We make an usual assumption that the region of

generation is surrounded by an insulator. The outer

magnetic ®eld may then be represented in the potential

form

b � ÿrrU, �20�

where U is the scalar potential of the ®eld. The

solution of the Eq. (20) has the form

U �
XM
l�1

Xl
m�0

�gml cos mj� hml sin mj�

Pm
l �cos y�

�
1

r

�l�1

,

�21�

where Pl
m are Legendre functions and gl

m, hl
m are

Gauss coe�cients which have to be determined.

The related equations for the ®eld components at

the surface of the sphere (Nth r-layer) have the form

b̂r �
XM
l�1

Xl
m�0

�ĝ
m
l cos mj� ĥ

m

l sin mj�

Pm
l �cos y��l� 1�,

b̂ � ÿ
XM
l�1

Xl
m�0

�ĝ
m
l cos mj� ĥ

m

l sin mj�
d

dW

Pm
l �cos W�,

b̂j �
1

sin y

XM
l�1

Xl
m�0

m�ĝ
m
l sin mjÿ ĥ

m

l cos mj�

Pm
l �cos W�:

�22�

The simple form of the br-component in Eq. (22)

encourage us to compute its ®rst derivative in r as

well:

b̂
0

r � ÿ
@

@r

r@U

@r
� ÿ

XM
l�1

Xl
m�0

�ĝ
m
l cos mj� ĥ

m

l sin mj�

Pm
l �cos y��l� 1�2:

�23�

Conversely, this derivative may be expressed as follows

b̂r ÿ br

dr
�
XM
l�1

Xl
m�0

��ĝ
m
l ÿ gml �cos mj

� �ĥ
m

l ÿ hml �sin mj�P
m
l �cos y��l� 1�,

�24�

where the same decomposition as with the previous

(Nÿ 1)th r-grid layer was used:

br �
XM
l�1

Xl
m�0

�gml cos mj� hml sin mj�

Pm
l �cos y��l� 1�:

�25�

We emphasize that, although the magnetic ®eld is

not potential in the (N ÿ 1)th layer, it can be decom-

posed into convergent series Eq. (25). Comparing Eq.

(25) with Eq. (24) leads to the equations for the Gauss

coe�cients of the Nth layer:

ĝ
m
l �

gml
�l� 1�dr� 1

, ĥ
m

l �
hml

�l� 1�dr� 1
: �26�

Comparing Eq. (4) with Eq. (22) leads to the

equations for gl
m, hl

m:

gml �

�
p

0

bcrmP
m
l �cos W�sin W dW

�l� 1�

��1
ÿ1

Pm2

l �m�dm

,

hml �

�
p

0

bsrmP
m
l �cos W�sin W dW

�l� 1�

��1
ÿ1

Pm2

l �m�dm

:

�27�

Here the Schmidt quasi-normalised form of the

Legendre functions has been used:

P0
l �cos W� � Pl,0�cos W�,

Pm
l �cos W� �

�
2�lÿm�!

�l�m�!

�1=2
�Pl,m�cos W�,

��1
ÿ1

Pm2

l �m�dm �
4

2l� 1
, for m > 0,

��1
ÿ1

Pm2

l �m�dm �
2

2l� 1
, for m � 0:

�28�

Thus

ĝ
m
l �

2l� 1

4�l� 1���l� 1�dr� 1�

�
p

0

bcrmP
m
l �cos W�sin W dW,

ĥ
m

l �
2l� 1

4�l� 1���l� 1�dr� 1

�
p

0

bsrmP
m
l �cos W�sin W dW:

�29�
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To obtain the boundary conditions for br-com-

ponent in terms of coe�cients b̂
c

rm
, b̂

s

rm
, they have to be

expressed in terms of the Gauss coe�cients ĝ
m
l , ĥ

m

l :

XM
m�0

b̂
c

rm
cos mj� b̂

s

rm
sin mj

�
XM
l�1

Xl
m�0

�ĝ
m
l cos mj� ĥ

m

l sin mj�P
m
l �cos W��l� 1�

�
XM
m�0

XM
l�m

�ĝ
m
l cos mj� ĥ

m

l sin mj�P
m
l �cos W��l� 1�: �30�

Then

b̂
c

rm
�
XM
l�m

ĝ
m
l P

m
l �cosW���l� 1�,

b̂
s

rm
�
XM
l�m

ĥ
m

l P
m
l �cosW��l� 1�: �31�

The substitution of Eq. (29) into Eq. (31) leads to

b̂
c

rm
�
XM
l�m

2l� 1

4��l� 1�dr� 1�

�
p

0

bcrmP
m
l �cos W�sin W dW

� Pm
l �cos W�,

b̂
s

rm
�
XM
l�m

2l� 1

4��l� 1�dr� 1�

�
p

0

bsrmP
m
l �cos W�sin W dW

� Pm
l �cos W�:

�32�

The same analysis for b̂W and b̂j leads to

b̂
c

Wm
� ÿ

XM
l�m

2l� 1

4�l� 1���l� 1�dr� 1�

�
p

0

bcrmP
m
l �cos W�sin W dW

�
d

dW
Pm
l �cos W�,

b̂
s

Wm
� ÿ

XM
l�m

2l� 1

4�l� 1���l� 1�dr� 1�

�
p

0

bsrmP
m
l �cos W�sin W dW �

d

dW
Pm
l �cos W�,

b̂
c

jm
�

1

sin W

XM
l�m

m
2l� 1

4�l� 1���l� 1�dr� 1�

�
p

0

bcrmP
m
l �cos W�sin W dW � Pm

l �cos W�,

b̂
s

jm
� ÿ

1

sin W

XM
l�m

m
2l� 1

4�l� 1���l� 1�dr� 1�

�
p

0

bsrmP
m
l �cos W�sin W dW � Pm

l �cos W�:

Thus, since Eq. (2) is a ®rst-order di�erential

equation, we did not use the vacuum boundary con-

dition, but integrated with respect to r from the centre

of the inner core just to the last r-layer.

For convenience, to be able to compare our results

with observations we used the quasi-Schmidt normali-

sation of Legendre functions. Gubbins' and Roberts'

(1987)recurrent formulas were used to calculate them.

The other reason of the applied normalisation is that

the norm of the Legendre functions, de®ned by Eq.

(28), does not include factorials which is an advantage

in numerical simulations.

6. Test for free decay modes

The ®rst test we performed was the test of induction

Eq. (1) without ¯uid motions. Thus, only the di�usion

of the magnetic ®eld was taken into account. The ana-

lytical solution of Eq. (1) in a conductive sphere with

V00 complemented by vacuum boundary conditions,

is a series of eigen functions, the so-called free-decay

modes:

b
decay � e

ÿk2
l
t

0
BBBBB@

�l� 1�ljl�klr�P
m
l �cos y�cos mj,

ÿ
r

sin y
jlÿ1�klr�mP

m
lÿ1�cos y�sin mj� cos mj

@

@y
Pm
l �cos y��rjlÿ1�klr�kl ÿ jl�kl,mr��,

ÿrjlÿ1�klr�cos mj
@

@y
Pm
lÿ1�cos y� ÿ

m sin mj

sin y
Pm
l �cos y��rjlÿ1�klr�kl ÿ jl�klr��

1
CCCCCA
, �34�

(33)
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where jl are a spherical Bessel functions and kl are

their roots obtained from the boundary conditions of

the ®eld (for details refer, e.g. to Mo�att, 1978; Gub-

bins and Roberts, 1987; Backus et al., 1996).

Here l= 1, . . . , 1. For l= 1 the terms with the (lÿ

1) index value for Bessel function must be omitted due

to the absence of magnetic monopoles.

Since spherical coordinates are being used, one must

formulate the boundary conditions not only on the

surface of the sphere, but also at the centre (r=0) and

along the axis of rotation (y=0, y=p). To do so we

can make use of the fact that the free-decay modes

form the basis of the space in which the solution is

found.

Using Eq. (34) the additional boundary conditions

in the centre of the sphere and at the axis of rotation ẑ

were applied.

Due to the asymptotics of spherical Bessel

function jl in the vicinity of the centre

jl0rl=�1� 3� . . . � �2l� 1��, all components of b are

zero for all l. As was mentioned above, the same

asymptotics is singular for poloidal dipole components

of B. It caused the numerical instability in the original

release of our computer code.

The boundary conditions along the axis of rotation

were derived from the properties of Legendre func-

tions. Thus, for the br-component in the vicinity of the

axis of rotation, br�y�0Pm
l and for m$ 0 the br-com-

ponent approaches zero. For m=0, br is an even func-

tion on y: br0cos
ly� 1 and the ®rst derivative with

respect to y is zero: �@br=@y�jm�0 � 0: For by-com-

ponent if m = 0, Eq. (34) yields by0 sin y and by0

sinm ÿ 1y if m> 1, hence, the zero boundary condition

applies to these values of m. For m = 1,

�@by=@y�jm�1 � 0: Therefore, since the poloidal and

toroidal terms of bj have the same structure with

respect to y to toroidal and poloidal terms of by-com-

ponent Eq. (34) respectively, the same conditions were

applied to the bj-component.

In our test of the initial ®eld distribution, we have

used the particular single modes of this decomposition

and compared the spatial distribution of the ®eld

during the computation as well as the magnitudes of

the decay rates g with analytical ones (ga). In our cal-

culations g was obtained as

g �
1

2

�
j _Bj2dr3�
jBj2dr3

:

We performed tests for all 1R lR 6 and 0RmR l.

For Bessel functions we used the ®rst root. In all cases

the error has a tendency to decrease with increasing of

number of points (N � K ) as 1/(N � K ). To illustrate

the convergence the corresponding maximal deviations

of the magnetic ®eld dB and decay rates dg �

�gÿ ga=ga� from analytical estimates for time moment t

=0.01 are presented in the Table 1.

7. Test on kinematic dynamo

In the general case, if V$0, the analytical solution

of Eq. (1) with the prescribed arbitrary V is not known

and the best way of checking a new numerical code is

comparison with previous calculations. For this reason

we chose the model of Gubbins (1973) (see also Dud-

ley and James, 1989). To make our result compatible

with theirs, we introduced some new de®nitions.

The decomposition of the prescribed velocity ®eld in

series of spherical functions leads to

V � T� S �
X
l,m

�Tm
l � S

m
l �, �35�

where the following representations of the poloidal

and toroidal ®elds are used:

V � T� S � r � �Ter� � r � r � �Ser�: �36�

Then

Tm
r,l � 0, Tm

y,l �
T�r�

r sin y

@Yl,m

@j
,

Tm
j,l � ÿ

T�r�

r

@Yl,m

@y
,

�37�

Sm
r,l �

l�l� 1�

r2
S�r�Yl,m,, Sm

y,l � ÿ
1

r

@S�r�

@r

@Yl,m

@y
,

Sm
j,l �

1

r sin y

@S�r�

@r

@Yl,m

@j
,

�38�

where Yl,m is a spherical function of order l and degree

m with Neumann normalisation, see, e.g. Liley (1970).

Gubbins (1973) used the following form of the

velocity ®eld

V � Rm�T
0
2 � ES02�, �39�

Table 1

Convergence test for l=3, m=0 . . .3

m 0 1 2 3

N�K=21� 21

dB ÿ0.125 ÿ0.068 ÿ0.051 ÿ0.021

dg ÿ0.052 ÿ0.042 ÿ0.024 ÿ0.008

N�K=41� 41

dB ÿ0.046 ÿ0.016 ÿ0.017 ÿ0.006

dg ÿ0.013 ÿ0.010 ÿ0.007 ÿ0.002
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with E=0.1 and

T0
2�r� � S02�r� � ÿr2sin�2pr�tanh�2p�1ÿ r��: �40�

The explicit form of V reads

V �

0
BBBBB@

ÿ3Esin�2pr�tanh�2p�1ÿ r���3cos2yÿ 1�

3

2
E�2sin�2pr� � tanh�2p�1ÿ r�� � 2prcos�2pr�tanh�2p�1ÿ r�� ÿ 2prsin�2pr�coshÿ2�2p�1ÿ r���sin2y

ÿ
3

2
rsin�2pr�tanh�2p�1ÿ r��sin2y

1
CCCCCA
: �41�

The corresponding section of this ®eld in equatorial

and meridional planes are shown in Fig. 1 (upper row).

Dudley and James (1989) recalculated the results of

Gubbins (1973) by solving the steady state of Eq. (1)

Fig. 1. Maps of Gubbins' model: r-, y- and j-components of velocity ®eld (row 1), magnetic ®eld for Rm=55 (row 2) and magnetic

®eld for Rm=ÿ95 (row 3).
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as an eigenvalue problem for Rm. The steady states

Rm=54.7 and ÿ96.7, were accurately determined using

20 spherical functions and 100 grid points in r. We

have found Rm=55.8, ÿ90.2 using 23 � 23 grid and

Rm=54.8, ÿ93.5 using 45 � 45 grid. Whereas the

agreement is excellent for positive threshold of gener-

ation, the less good agreement for the negative Rm is

due to the more complex structure of the magnetic

®eld (compare second and third rows of Fig. 1). To

verify this result we made an additional integration

using 89 � 89 grid. The resulting Rm=ÿ96.0 indicates

quadratic convergence to the value obtained by Dudley

and James (1989).

8. Conclusions

In the modelling of the hydromagnetic dynamo one

must pay particular attention to the correctness of the

calculations. The best way of avoiding mistakes is to

divide the computer code into several steps and check

carefully every step. In harmony with these principles,

the project of 3-D inviscid geodynamo modelling was

started with the solution of the induction equation. In

this ®rst step we have developed the computer code of

the model without the inner core. We have recovered,

to good accuracy, the free decay modes as well as the

solutions of the kinematic dynamo models of Dudley

and James (1989). The method can be easily extended

to the situation with the solid inner core, or modi®ed

to solutions of the scalar equation of thermal convec-

tion. This will be the subject of future work.
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