
176 Numerical Methods and Programming, 2003, Vol. 4 (http://num-meth.srcc.msu.su)UDC 532.517:537.584THE STEWARTSON LAYER UNDER THE INFLUENCE OF THE LORENTZ ANDARCHIMEDEAN FORCESI. Cupal 1, P. Hejda1, and M. Reshetnyak2The in
uence of the Lorentz force on the Stewartson layer evolving at the rotating inner core isinvestigated for the case when its nonlinear e�ects are not ignored. The in
uence of the imposedArchimedean force is also examined. The problem is solved using a �nite di�erence method for thebasic physical variables of velocity, magnetic �eld, and pressure. The pressure variable is subsequentlycorrected by a fractional step method. When only viscous forces are assumed at the inner coreboundary, no di�erences with the previous results are found. However, when the in
uence of theLorentz force is considered and all its nonlinear e�ects are taken into account, the superrotationof the outer core exhibits a di�erent character and a larger amplitude than in the case when thenonlinear e�ects are ignored. The Archimedean force distinctly increases the Stewartson layer widthand thus the change in the azimuthal velocity at the inner core boundary is not as sharp.1. Introduction. The Stewartson layer, that evolves at the cylinder circumscribing the rotating Earth'sinner core, and the Ekman layers at the core-mantle boundary (CMB) and at the inner core boundary (ICB)complicate the problem on numerical simulation of the geodynamo. These layers are caused by the 
uid viscosityand may be very thin when the viscosity is su�ciently small. Such thin layers usually create many di�cultiesfor any numerical process applied to solve the dynamo equation. This is particularly true for the Stewartsonlayer and, therefore, its behavior under di�erent conditions has been examined in several studies. Hollerbach [9]assumed that the inner core and the mantle are insulators. He also considered the imposed rotation of the innercore relative to the outer core and the imposed dipole magnetic �eld �tted with the inner core. Hollerbach'snumerical results were revised by Anufriev and Hejda [1, 2] in an inviscid approximation. The main results oftheir work was that an increase of the imposed magnetic �eld leads to the destruction of the Stewartson layer, afact that is very suitable for the solution of the self-consistent dynamo problem. Note that otherwise we have toresolve structures with a spatial scale of order E1=3 where the Ekman number E < 10�8. The next step in theexamination of the Stewartson layer was made in [4]. In addition to Hollerbach's assumptions [9], the authorsof [4] assumed that the inner core is conductive and also took the linearized Lorentz force into account. Theyfound an interesting e�ect of so-called superrotation of the outer core, where a part of the outer core rotatesfaster than ICB. Recall that in [4] the Stewartson layer was also analyzed in detail for the pure viscous casein which the Lorentz force is ignored. They were able to follow the Proudman [10] asymptotics and to con�rmsome conclusions made in [11].No previous studies examined the in
uence of the nonlinear terms in the Lorentz force on the Stewartsonlayer or the in
uence of the Archimedean force. This paper is an attempt to investigate these in
uences and, atthe same time, to try another numerical method. Namely, the previous studies mostly used the decompositioninto spherical harmonics (spectral methods). In this paper a grid method of discretization is applied insteadof the spectral method where the pressure is eliminated. We solve the equations in basic physical variablesand use a fractional step method for pressure correction to provide the divergence of velocity [5, 3, 8]. Thenumerical method is also tried in the pure viscous case in which the Archimedean and Lorentz forces are ignored.However, we do not repeat the detailed study presented in [4], where the Ekman number was decreased down toE = 10�8 and the conclusion that for E < 10�4 the Proudman asymptotics started to be visible was obtained.Nevertheless, a comparison of our solution in the pure viscous case with [4] and [9] is possible. In addition, thesolution with neglected nonlinear terms in the Lorentz force can be compared with that given in [4].2. Basic equations and the numerical method. Let the outer spherical boundary of the liquid outercore of radius r0 rotate with an angular velocity 
 (the Earth's rotation rate). Let the inner core of radius rirotate with a prescribed angular velocity 
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Numerical Methods and Programming, 2003, Vol. 4 (http://num-meth.srcc.msu.su) 177core relative to CMB. Accepting L = r0 as the length scale and L2=� as the time scale, we scale the velocity v,the magnetic �eld B, and the pressure p as �=L, p2
���, and 2
��, respectively. Here � is an average densityof the core, � its permeability, and � the di�usivity of the outer core. In the magnetic case we will assumethe imposed dipole �eld B0 in the outer core to be �tted with the rotating ICB. Inside the inner core thisdipole �eld is assumed to be zero. Therefore, the magnetic �eld is B0 + b in the outer core and b in the innercore, where b is the induced magnetic �eld. The induction equation and the equation of motion describing theproblem in the outer core are R0�@v@t + v � rv� = �rp+ F+ Er2v; (2:1)@b@t = r� �v � (B0 + b)� +r2b: (2:2)In the inner core the induction equation can be reduced to@b@t = r� (ri!i sin � 1' � b) +r2 b: (2:3)Moreover, in the outer and inner cores the equationsr � v = 0; r �b = 0 (2:4)can be solved. The sum of the Archimedean (Fa), Coriolis, and Lorentz (FL) forces in the outer core isrepresented as F = Fa � (1z � v) + FL; (2:5)where for the imposed dipole magnetic �eld the Lorentz force isFL = (r� b)�B0 + (r� b)� b: (2:6)The Ekman number and the Rossby number appear in the equations:E = �2
L2 ; R0 = �2
L:The equations are accompanied by the boundary conditionsvr = v� = 0; v' = ri!i sin �; b continuous at ICB;vr = v� = v' = 0; b potential at CMB: (2:7)In the practical calculation the inertial terms in the left-hand side of (2.1) can be ignored, since R0 ischosen su�ciently small. However, we temporarily leave the time derivative @v=@t in its place at the beginningof the numerical process to keep the parabolic structure of PDE and integrate the equations up to a stablesteady-state where this derivative becomes negligible.The numerical method in use is described in [6, 7, 8] in su�cient detail. Therefore, only the main featuresof our approach will be outlined here. The transformed variables f = r�1F are used instead of the componentsof velocity, magnetic �eld, and pressure to avoid singularity of the magnetic �eld at the center. Thus, the zeroboundary conditions at the center can be applied for all variables. The system (2.1) { (2.6) then leads to asystem of linear algebraic equations due to the nonstaggered grid in the r- and �-directions. The second orderterms are treated implicitly using the Gauss{Seidel scheme to avoid Courant's problem for small time steps.Having b� and b' from (2.2) or (2.3), the br-component is obtained from the second equation (2.4). Actually, thisequation is only a restriction in the initial condition for the magnetic �eld in the induction equation. However,that is not the case for the velocity in (2.1). The solution of this equation requires an additional equation forpressure.The problem of how to satisfy the �rst equation (2.4) can then be solved using spatial time splitting (afractional step method) as used, for instance, in [5] or [3] (see also [8]). In principle, the steady-state solutionis obtained by successive integration of the parabolic problem (2.1) (the convective term in the left-hand sideis omitted), where the velocity v is split into two parts at each time step n: vn = Un + un having r � vn = 0.At the next time step, the equation is �rst solved without the pressure termR0 Un+1 � vn�t = Fn +Er2vn



178 Numerical Methods and Programming, 2003, Vol. 4 (http://num-meth.srcc.msu.su)with the boundary conditionsR0Un+1� = �t @pn=@�+vICMB� and Un+1r = 0 at ICB and CMB. Here � indicates thetangential components (� = �; ') and the derivatives (@=@� = @=r @�; @=r sin � @'), whereas vICMB� representsthe boundary condition for the tangential velocity components (2.7) at ICB and CMB. The correction of velocityis then computed with the help of the pressure variable. Applying the divergence r� to equation (2.1), we getthe Poisson equation r2pn+1 = r � �Fn + Er2vn� = R0�t r �Un+1;which is solved with the boundary condition @pn+1=@r = 0 at ICB and CMB. The correction of velocity isthen R0un+1 = ��trpn+1. Therefore, vn+1 satis�es (2.1) and the �rst equation (2.4). At the same time, theboundary condition for the radial velocity component at ICB and CMB are satis�ed.3. Numerical results and discussion. In all calculations we assume r0 = 1, ri = 0:4, and R0 = E. Thestabilized steady-state solution was found in all cases and, therefore, the role of the Rossby number is marginal.The �rst step in our calculations was directed to obtain the Stewartson layer without any external force.Therefore, Fa and FL in (2.5) are omitted. The prescribed !i = 1 was considered and the model was calculatedfor the Ekman numbers E = 10�3, 3 � 10�4, 10�4. Figure 1 shows the expected dependence of the Stewartsonlayer thickness on the decreasing Ekman number. The behavior of the Stewartson layer in the above cases isthe same as in the previous investigation in [4]; this allows us to state that our numerical approach is suitablefor this task. It is not a purpose of this paper to con�rm the Proudman asymptotic solution [10], which can befollowed for smaller Ekman numbers.
Fig. 1. Meridional sections of the velocity components in the pure viscous case for the Ekman numbersE = 10�3, E = 3 � 10�4, and E = 10�4The dependence of the Stewartson layer thickness on an amplitude of the Archimedean force was alsoinvestigated. The Lorentz force FL in (2.5) was omitted and !i = 1 was again considered. The Archimedeanforce was prescribed only radially dependentFa = Fa(r0 � r)(r � ri)1r:Our calculations were made for E = 3 �10�4 and Fa = 0:3; 3:0. Figure 2 shows the in
uence of the Archimedeanforce amplitude on the Stewartson layer thickness. The thickness increases as the Archimedean force amplitudeincreases.The dependence of the Stewartson layer on the Lorentz force was observed without the presence of anyArchimedean force (Fa = 0). For this purpose, the imposed dipole �eld is assumed in the outer core to be �tted
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Fig. 2. Meridional sections of the velocity component when the prescribed Archimedean force is applied andthe Ekman number E = 3 � 10�4 is consideredwith the rotating ICB: B0 = r3iB03r3 (21r cos � + 1� sin �):In this case the prescribed rotation of the inner core is considered !i = 0:1 and the Ekman number was againtaken E = 3 � 10�4. We considered values B0 = 4:8; 5:4; 35:8; 44:8.In the linearized case, the second term in the right-hand side of (2.6) is omitted. This case should relate tothe similar investigation in [4]. The superrotation is also observed in the equatorial region (see Figure 3) withthe maximum of the azimuthal velocity shifting away from ICB with the increasing amplitude of the imposeddipole �eld.Except in the case of B0 = 4:8, the amplitude of the superrotation of the outer core does not change withthe increasing amplitude of the imposed dipole. This result is also in agreement with �ndings in [4], althoughthe authors of [4] observed a slow depression of the amplitude of superrotation for large amplitudes of theimposed dipole. Nevertheless, in the range of amplitudes B0 2 (5:4; 44:8) we considered, they also observed nochange in the amplitude of superrotation. Figure 4 demonstrates that the typical cylindrical structure of theStewartson layer is destroyed.When the second term in the right-hand side of (2.6) is included, the nonlinear e�ects of the Lorentz forceslightly change the picture that can be observed in the linearized case. The typical cylindrical structure of theStewartson layer is again destroyed; however, this destruction is stronger (see Figure 5).Calculating the nonlinear case for the same values as the previous linear one, we can again observe super-rotation with the maximum of the azimuthal velocity shifting away from ICB. However, it is essential that itsamplitude increases when the imposed dipole amplitude increases (see Figure 6). This e�ect was not observedin the linearized case. Moreover, the amplitude of superrotation is two or three times larger than that in thelinearized case. Therefore, the nonlinear terms in the Lorentz force play an important role in in
uencing thevelocity in the outer core.4. Conclusion. The Stewartson layer appeared in the pure viscous case when the Archimedean andLorentz forces are omitted (Fa = 0, B0 = 0). These calculations bring nothing new to the research of theStewartson layer and only con�rm previous investigations made in [9] and [4]. The Proudman asymptotics werenot tested. Our calculations of the pure viscous case can be considered as a good test of our codes.The imposed Archimedean force (Fa 6= 0, B0 = 0) in radial direction brings new �ndings. The increasingamplitude of the Archimedean force leads to the increased thickness of the Stewartson layer while the cylindrical
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Fig. 3. Dependence of the angular velocity ! = v'=s in the equatorial plane on the cylindrical radius s = r sin �for di�erent magnitudes of the imposed magnetic dipole: B0 = 4:8, B0 = 5:4, B0 = 35:8, and B0 = 44:8. TheEkman number E = 3 � 10�4 is considered and the nonlinear terms in the Lorentz force are ignored
Fig. 4. Meridional sections of the velocity components when the imposed magnetic dipole is applied within theouter core: B0 = 5:4, B0 = 35:8, and B0 = 44:8. The Ekman number E = 3 � 10�4 is considered and thenonlinear terms in the Lorentz force are ignoredcharacter of the layer remains unchanged. Therefore, the azimuthal component of the velocity changes moreslowly, crossing the cylinder circumscribing the inner core, than in the pure viscous case. A signi�cant in
uenceon the Ekman layers at ICB or CMB was not observed.The imposed dipole �eld (Fa = 0, B0 6= 0) causes the generation of the magnetic �eld in the outer and innercores and thus the Lorentz force in
uences the 
ow in the outer core. When only the linearized Lorentz force isconsidered, the e�ects observed in [4] are con�rmed. In particular, the superrotation of the outer core appearsand when the imposed dipole amplitude increases, the maximum of the azimuthal velocity shifts away from
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Fig. 5. Meridional sections of the velocity components when the imposed magnetic dipole is applied within theouter core: B0 = 5:4, B0 = 35:8, and B0 = 44:8. The Ekman number E = 3 � 10�4 is considered and thenonlinear terms in the Lorentz force are taken into account

Fig. 6. Dependence of the angular velocity ! = v'=s in the equatorial plane on the cylindrical radiuss = r sin � for the di�erent magnitudes of the imposed magnetic dipole: B0 = 4:8, B0 = 5:4, B0 = 35:8, andB0 = 44:8. The Ekman number E = 3 � 10�4 is considered and the nonlinear terms in the Lorentz force aretaken into accountICB. At the same time, the amplitude of this superrotation remains unchanged for a relatively large interval ofstrength of the imposed dipole. When the nonlinear terms are also considered in the Lorentz force (this wasnot a subject of the study in [4]), new e�ects can be observed. In addition to the previous e�ects caused by thelinearized Lorentz force, the amplitude of super-rotation increases as the imposed dipole amplitude increases.The amplitude of superrotation is also two or three times larger than that in the linearized case. The structureof the Stewartson layer is no more cylindrical in either the linearized or the nonlinear case. However, in the
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