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S u m m a r y : A 3D kinematic geodynamo model in a sphere with the conductive solid inner core
is considered. The 3D magnetic field and velocity field are resolved in the physical space for r- and
0-coordinates, whereas the sin- and cos-decomposition is applied to the ^-coordinate. The
additional boundary conditions for the case of non-zero velocity field on the boundaries of the liquid
spherical shell and for different magnetic diffusivities of the inner and outer core are applied. The
computer code was tested by free decay mode solutions and comparisons were made also with
results reported by other authors. This work is a part of a project to study 3D inviscid geodynamo
models.
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1. INTRODUCTION

Due to the very complexity of 3D geodynamo equations, the traditional approach to geodynamo
problem is numerical. From the pioneering calculations of the kinematic dynamo by Bullard and
Gellman (1954) to the most advanced 3D hydrodynamic simulations by Glatzmaier and Roberts
(1995) or Kuang and Bloxham (1997) the numerical process was based on the decomposition of the
magnetic and velocity fields into toroidal and poloidal parts B = P + T = Vx (Ter) + V x V x (Per)
and similarly for V. In the 2D models this decomposition takes a simplier form
B = P + T = V x (Tep) + V x CPe<p). The scalars T and T were usually expanded into spherical
harmonic functions (spectral method), some of the 2D dynamo computations were carried out by
finite difference method, see for example (Braginsky, 1978, Braginsky and Roberts, 1987, Cupal
andHejda, 1989, Anufriev et al, 1995, Anufriev and Hejda, 1998).

Our new numerical method deals directly with three components of magnetic and velocity fields
(in the spherical system of coordinates). The components are resolved in the physical space for
r- and ^coordinates and expanded in the sin- and cos- series for ^-coordinate. Development of this
algorithm was aimed at finding a method, which would better fit for the inviscid hydromagnetic
dynamos. From the numerical point of view, the inviscid models (i.e. models in which the viscosity
is neglected in the bulk of the core) are characterized by the fact that the sharp changes of velocities
in the boundary layers are replaced by jumps and the velocity in the bulk of the core is expressed in
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the form of integrals in z direction (for details see for example Anufriev, 1995), The solution thus
requires a transition between spherical and cylindrical coordinates at each time step. This can be
more simply accomplished by grid method then by spectral one. A similar treatment was used by
Nakajima and Roberts {1995) who solved the problem in cylindical system of coordinates and
avoided the transition between the systems by a special mapping method.

Our new method was explained in (Hejda and Reshetnyak, 1999), hereinafter denoted as HR.
Now we extend this approach to the models with solid inner core and we take into consideration
also the effects caused by jumps of the velocities across the boundaries. We report tests for free
decay modes. Then we describe a simple model with different magnetic diffusivity n at the outer
and inner core. And at last, we demonstrate some results of numerical simulations with imposed
velocity field similar to Gubbins' model (1973) (see also Dudley & James, 1989), but with the inner
core.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

The kinematic dynamo problem consists in solution of the induction equation

for the non-divergent

V - B = 0 , (2)

magnetic field, where V is an imposed velocity field usually treated as incompressible
(V-V = 0).

As was explained above, the velocity changes abruptly at the inner-outer core boundary
(IOCB) and core-mantle boundary (CMB). The magnetic diffusivity can have a jump at
IOCB but is constant in either region. The mantle is supposed to be non-conductive.
Analyzing (1) and (2) in the thin boundary layer of thickness 5and taking into account
that (a) typical time changes in the layer are much smaller than those in the bulk of the
core, i.e. l.h.s. of (1) can be neglected, (b) changes of magnetic field and velocity along
the layer are neglegible in comparisson with the changes across the layer and (c) all jumps
that are O(S) can be neglected, we come to following results: Magnetic field and
derivatives of its radial component are continuous in the whole space. The radial
derivative of tangential components has on IOCB the jump

and B links on the CMB to the potential source-free magnetic field with the jump

Following HR we present the solution in the form
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where b = rB and (r,0,<p) is a spherical system of coordinates. Introduction of a new
variable b instead of B allow us to deal properly with the singularity of the magnetic field
in the centre of the sphere.

Since spherical coordinates are being used, one must formulate the boundary
conditions not only on the surface of the sphere, but also at the centre (r - 0) and along the
axis of rotation (6= 0, 0= n): To do so we can make use of the fact that the free decay
modes form a basis of the space in which the solution is found. We get following
conditions: in the centre (r = 0) all components of b are zero; at the axis of rotation (0=0

In contrast to the toroidal-poloidal decomposition, where the non-divergence is
automatically satisfied, in this case we must take deal with it. At the first glance, the
situation seems to be rather curious, as there are four equations (1) and (2) for just three
components of magnetic field B. Nevertheless, it only appears so. The core of a subject is
that if the initial vector B/init is non-divergent, the exact solution of (1) preserves this
property. In the case of the numerical solution there is the danger that the non-divergence
of the solution will deteriorate due to numerical errors. We, therefore, integrate Eq. (1)
only for 0and ^components and compute the r component from condition (2).

The substitution of (5) into Eqs (1) and (2) leads to the following system:

and the convective term R:

Studia geoph. et geod. 43 (1999) 321



P. Hejda and M. Reshetnyak

and the convective term R:

The rules for decomposing of R into sine and cosine Fourier series are described in HR.
For better understanding the process as well as to check the stability and correctnes of our
solution we compute the balance of magnetic energy. Taking the scalar product of (1)
with B and integrating over the bulk of the core we get

Following Anufriev et al. (1993) we introduce the function of imbalance which is equal to
the difference of the r.h.s. and l.h.s. of Eq. (9). This quantity can be used to control the
parameters of the numerical process, e.g., to optimize the length of the time-step.

3. NUMERICAL RESULTS

The finite difference numerical scheme with central difference approximation of the
2nd order of accuracy was applied on grid G= {(//, 0/), i = 1,..., N, j= 1,,.., K], where
Oj-(j-\)h0, hg=nl(K-\) and the grid size in r may be regular or irregular. The
diffusions (second-order derivative terms) in Eqs (6b, 6c) were carried out implicitly,
whereas the terms with the first-order derivatives were treated explicitly. The
corresponding systems of linear equations were solved by the Gauss-Seidel method.

Fig. 1. Maps of the free decay mode P23$ with n1 = n2 (row 1) and 771 = 0.3n2 (row 2); r-, &• and

(0>- spherical components are shown in the meridional projection for q> = 0 (left side of the circles)
and in the equatorial plane (right side of the circles). The numbers denote the minimal and maximal
values.
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We checked our model by free decay modes (up to order 6) with equal magnetic
diffusivity n in the inner and outer core and obtained ~N/2(K2) convergence to the
analytical solution. For details see HR. In order to check how the solution depends on the
inner core conductivity, calculations were carried out with higher value of the latter
(Fig. 1). According to (3), the r-component is smooth across IOCB, whereas the other
components suffers with a jump. Let us notice that the r and (p components are
symmetrical with respect to the equator. The non-zero values on the equator shown in
Fig. 1 are just errors of the numerical approximation.

At last, we have made comparison with the kinematic dynamo of Gubbins. The model
was originally defined by velocity field

Fig. 2. The maps of the velocity (rows 1, 3) and magnetic fields (2, 4) for the Gubbins model
without (1, 2) and with (3, 4) the inner core for Rm = 53, n1 = n2; r-, 9- and (p- spherical
components are shown in the meridional projection for (p = 0 (left side of the circles) and in the
equatorial plane (right side of the circles).
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(Gubbins, 1973). The steady (stationary) states Rm = 54.7 and -96.7 were accurately
determined by Dudley and James (1989) and these values were confirmed by HR. In the
recent paper we have used the same velocity but with V = 0 in the inner core (for
r <: 0.35). In contrast to the former case, the solution is now oscillatory, which makes a
direct comparison rather difficult. Nevertheless, the effect of the jump of velocity on the
tangential components of B is evident (Fig. 2).

4. CONCLUSIONS

One of the main problems in solving the geodynamo is to check the correctness of the
results. Since, in the general case, the equations have no analytical solutions the best way
is to compare results obtained by various methods. As our method differs substantially
from the traditional spectral approach, the good coincidence with previous results is
significant. In order to avoid the mistakes it is also important to divide the computer code
into several steps end check carefully every step. In harmony with this principles the
project of 3D inviscid geodynamo modelling have been started with the solution of
induction equation. In the first step (see HR) the computer code of the model without the
inner core was developed and tested by free decay modes and by comparison with
kinematic dynamo calculations of Dudley and James (1989).

The method have been now enlarged to the case with the solid inner core. The jumps of
velocity and conductivity at the boundaries of the liquid core were also taken into account.
The computer code thus satisfies all demands put on the solution of induction equation in
the frame of the 3D inviscid geodynamo models.
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