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PACS. 47.27.Eq – Turbulence simulation and modeling.

Abstract. – A model of Boussinesq convection in a fast rotating spherical layer with the
free-rotating inner core is considered. To solve the problem, two sets of equations are used.
First, we solve the original Navier-Stokes equation and thermal-flux equation on the coarse
grid. The small-scale flow features are described in terms of the shell model technique. The
influence of small scales on large-scales is taken into account by means of effective viscosity,
which is calculated from the spectral energy flux defined in the shell model. The properties of
the turbulent spectrum is considered.

Introduction. – Astrophysical and geophysical convection (as well as convection encoun-
tered in engineering processes) usually involves a very wide range of scales, so that a direct
numerical simulation of the problem requires usage of various simplifying assumptions. For
example, the geodynamo problem considers flows with the Reynolds number up to Re ≈ 109

(e.g., [1]) and a comprehensive direct numerical simulation will require a grid with about
N ≈ Re9/4 ≈ 1020 nodes. One way to make the problem acceptable for available computer
facilities is to rescale the dimensionless numbers, reasoning from the idea of turbulent trans-
port coefficients and neglecting small-scale motion [2]. In this case, the turbulent transport
coefficients are estimated from various semiempirical models of turbulence [3].

Here we suggest a further step and describe the subgrid turbulence in the framework of the
shell model. The shell model is a finite-dimensional model of turbulent motions, yet it gives a
correct description of their spectral properties. In many cases it provides us with a comprehen-
sive information concerning small-scale turbulence we are interested in. The shell model re-
quires reasonable computer facilities to ensure numerical realization of the proposed approach.

We apply this general approach to the convection in a spherical layer heated from below.
This choice of geometry comes from the particular interests to the geodynamo (or astrophys-
ical dynamo) problem. Here, basing on the assumption of the homogeneous and isotropic
small-scale turbulence, we consider only one shell model for the whole spherical layer. This
simplification can be relevant on the small scales of real objects only, and should be considered
as a first step in this approach. We also discuss possible applications of this technique to the
case with the magnetic field.
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The large-scale equations. – We have developed our approach to facilitate the treatment
of the convection problem in a rotating spherical layer which is important for understanding
the Earth and stellar convection. Convection of incompressible fluid (∇ · V = 0) in the
Boussinesq approximation in the layer (ri < r < r0), rotating with the angular velocity Ω, is
described by the Navier-Stokes equation

∂V

∂t
+ (V · ∇) V = −∇P + F + Pr∇2V (1)

and the heat flux equation
∂T

∂t
+ V · ∇(T + T0) = ∇2T. (2)

where ri = 0.35, r0 = 1 are similar to that of the Earth; V and T are the velocity field
and temperature deviation from the prescribed temperature profile T0 = ri/r−1

1−ri
[4]. Velocity,

pressure and time are measured in terms of κ/L, ρκ2/L2 and L2/κ, respectively, where L = r0

and κ is the thermal diffusivity, Pr = ν/κ is the Prandtl number, ν is the kinematic viscosity.
The force F includes the Coriolis and Archimedean effects:

F = −R−1
o (1z × V ) + RaPrTr1r, (3)

where (r, θ, ϕ) is the spherical coordinate system, and 1z is the unit vector along the axis of ro-
tation. Ro = κ/(2ΩL2) is the modified Rossby number and Ra = αg0δTL3/κν is the Rayleigh
number, α is the coefficient of volume expansion, δT is the drop of temperature through the
layer and g0 is the gravity acceleration at r = r0. Equations (1)-(3) are closed by the non-
penetrating and no-slip boundary conditions for velocity field and zero boundary conditions for
temperature perturbations. Equations (1)-(3) can describe the large-scale convection properly,
provided that the grid mesh does not exceed the scale of the obtained solution.

The problem arises when the grid mesh is larger than the typical viscous scale λ ∼ LRe−3/4

(see, e.g., [5]). Here Re = UL/ν is the Reynolds number, which in our case can be related
to the Rayleigh number as Re = (Ra/Pr)1/2 (the characteristic velocity U is estimated from
the relation ρU2 ≈ ραδTgL). There are two ways to solve the problem: the most primitive
is to increase the number of points, which itself is rather problematic for 3D problems with
Re � 103. The second way is to describe the turbulent effects using some approximate
description for the small-scale variables. For this purpose we apply ourselves to the so-called
shell models of turbulence.

The shell models. – The shell models were introduced in the seventies [6, 7] as an at-
tempt to mimic the Navier-Stokes equations via dynamical systems with limited degrees of
freedom. They are constructed by truncation of the Navier-Stokes equations in the Fourier
space, retaining only one real or complex mode Un as a representative of all modes in the
shell with a wave number k ranging from kn = k0λ

n to kn+1 = k0λ
n+1. The parameter λ

characterizes the ratio between two adjacent scales. It is one of the parameters of the model,
which is usually taken equal to λ = 2 (then every shell corresponds to an octave of the wave
numbers). Hereinafter, we shall use this value. The coupling between the shells is chosen such
as to preserve the main symmetries and properties of the Navier-Stokes equations. In spite
of the obvious fact that the shell models give only a simplified description of turbulence, they
prove to be a reasonable tool in the turbulent studies. For an introduction to shell models
the readers are referred to [8].

In this paper, we take for a basis the so-called GOY shell model (Gledzer [7], Ohkitani and
Yamada [9]). The properties of this model were investigated in detail by Biferale et al. [10],
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and Frick et al. [11]. Since we intend here to solve a shell model together with eqs. (1)-(3) we
wrote the usual GOY equation in terms of real variables Un. Here we assume that no force is
essential on small scales, described by the shell equations. It means that the Bolgiano scale,
which characterizes the smallest turbulent scale, affected by the Archimedean force, is larger
than the grid mesh. We also omitted the Coriolis term, having in mind that the Coriolis force
does not input any energy into the system. (Note that for the full anysotropical model its
effect can be important, see [12].) Then we can write

dtUn = kn

(
Un+1Un+2 − 1

4
Un−1Un+1 − 1

8
Un−2Un−1

)
− Prk

2
nUn. (4)

In the inviscid limit this system of shell equations is characterized by two conservation laws.
The first conserved quantity E corresponds to the energy and the second one H can be
considered as an analogue to helicity:

E =
∑

n

|Un|2, H =
∑

n

(−1)nkn|Un|2. (5)

Equations (4) are integrated for n = nmin . . . nmax. The left limit is determined by the
grid mesh d (knmin = 2π/d), the right one must enable one to resolve the smallest scale, which
can be excited for a given Rayleigh number.

Combined model. – A more delicate point is to provide a correct linkage between the
large-scale (grid) and small-scale (shell) simulations. Our main goal at the first stage is the
evaluation of the energy dissipation on small (subgrid) scales and corresponding energy out-
flow from large scales. To do this we must first prescribe at each time instant the value
of the variable U at two adjacent points, Unmin and Unmin+1, which reflect the instanta-
neous intensity of velocity oscillations on the typical scale resolved by the grid. The shell
energy En = U2

n corresponds to the energy contained in the whole octave of the wave num-
bers U2

n =
∫ kn+1

kn
|V̂ (�k)|2d�k ≈ kn|δVn|2. So far the large-scale equations are based on the

finite-difference approximation, while the estimates of Unmin and Unmin+1 use the second-
order structure function SF

2 (l) = 〈|F (x + l) − F (x)|2〉 for any field F calculated for arbitrary
non-homogeneous grid mesh, where 〈. . .〉 means averaging over the whole set of pairs of mesh
points with kn < l−1 < kn+1.

The second essential point in the interaction of these two models is the influence of the
small-scale model on large scales. This effect can be described by introducing the effective
(turbulent) viscosity νT and corresponding corrections for the diffusion coefficients in the large-
scale model. According to Kolmogorov’s assumptions, the dissipation scale λ can be derived
from the dissipation rate ε and molecular viscosity ν as λ ≈ (ν3ε−1)1/4. Then the effective
turbulent viscosity, which provides the same dissipation rate but on the grid scale, can be
estimated as νT = 0.1(δ4ε)1/3. Here the numerical coefficient is defined from the comparison
of our formulas with Smagorinsky’s model [13]. The dissipation rate ε is calculated as the
total energy dissipated in the shell model per time unit ε =

∑nmax
n=nmin+2(knUn)2.

The last assumption concerns the large-scale viscosity ν̂ = ν + νT and corresponding
diffusion terms. We suppose that the diffusion terms in eqs. (1)-(2) can be rewritten as
Pr(1+νT )∇2V and (1+Prν

T )∇2T , which is equivalent to the assumption that the turbulent
Prandtl number in the regime of developed turbulence tends to unity. Note that the detailed
description supposes the separated shell model for each grid node of the large-scale model.
Here we make only a mean over the whole volume estimate of turbulent characteristics, using
only one shell model.
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Fig. 1 – Evolution of the kinetic energy (upper) and variations of the subgrid viscosity (lower) plots.

To solve the large-scale equations (1)-(3) we used the control volume method described
in details in [14]. The typical grid mesh was (r, θ, ϕ) = (16, 16, 16). These values give the
estimations only because we use a staggered grid technique and the number of points for
different physical fields and meshes is different. Because the spherical homogeneous grid leads
to non-homogeneous distances between the points, the estimate of the minimal resolved scale
d is not trivial. Here and in the following we use the upper estimate d = 1/16. Note that in the
vicinity of the inner core and poles this scale is more than one order smaller. Following these
estimations we choose nmin = 4. The maximum number of shells follows from the estimate

of Kolmogorov’s diffusion scale: knmax >
(

Ra

Pr

)3/8

. In our case we used nmax = 19 (however,
this number can be enlarged if required).

It should be noted that the turbulent diffusivity as well as the mean velocity are treated
as the values averaged over the timescale of turnover time on the spatial scale of matching of

the shells and the grid. The turnover time for Kolmogorov’s scale τλ =
(

Ra

Pr

)−3/4

defines the
time step τs for integration of the shell equation. The time step τg for the grid equations was
defined from the requirement of fulfillment of conservation laws in the control volume (see [14]
for details). Obviously, τs � τg, in our case their ratio was 1000. The shell models have a
highly irregular oscillatory solution, which can be used after averaging over time. Here for

averaging time we use the turnover time τl = τλ

(
d
L

)2/3
(

Ra

Pr

)−1/2

, where d is a grid scale. In
our case, we put d ≈ L and τl = 1000τλ. The same turnover time was used for averaging the
grid data to determine Unmin , Unmin+1 in the shell model.

The results of simulations. – Simulations were made on the single processor Pentium and
took about some hours. Figure 1 shows the time evolution of the kinetic energy of supergrid
scales obtained by the method of shell model. This figure also shows the variation of the
subgrid viscosity νT . Note that simulation without the subgrid viscosity leads to an essential
growth of kinetic energy and noisy energy variations. A smooth behavior of kinetic energy is
provided by variations of the subgrid viscosity (the lowest curve in the same figure).
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Fig. 2 – Structure function S2 (circles) calculated from the grids and shell spectrum (squares) for
Ra = 3 · 1012, Ro = 10−4, Pr = 0.1. The straight line indicates the slope of k−2/3, which corresponds
to Kolmogorov’s spectrum.

Figure 2 shows spectral characteristics for both super- and subgrid ranges of scales. The
large (supergrid) scales are described by the second-order structure function S2 (black circles).
The small (subgrid) scales are characterized by the mean shell energy 〈U2

n〉 indicated by black
squares. The conjugation between the grid and shells occurs at nmin = 4. The tail of the
structure function (n = 5–8) corresponds to polar regions, where the spherical grid has better
resolution. Note that the spectra coincide up to n = 7. An essential kinetic energy dissipation
occurs in shells with n > 12. The shell with n = 12 is responsible for the scales two order
of magnitude lower than the typical grid scale. The slope of the curves for 6 ≤ n ≤ 15 is
“−2/3”, which corresponds to Kolmogorov’s spectrum “−5/3”.

To summarize, the approach developed in this paper allows us to resolve the small-scale
fields in the wide range of subgrid scales and use the obtained information in the large-scale
simulations. The obtained Reynolds number is already of the same order as the expected one
in the Earth. Our model makes it possible to describe the small-scale motions over 5 decades
of scales. Nevertheless, we consider the possibility to extend this range of scales when more
effects in the shell model are taken into account and spectra are flatter. A natural development
of the method suggested can be based on the usage of a family of shell models to reproduce
spatial variability of turbulence properties.

We also realize that the magnetic field is the crucial point in the modern models of the
Earth’s core and our approach must include this field. So far, the shell model technique has
already been developed for MHD turbulence (see, e.g., the paper by Frick and Sokoloff [15],
who introduce a MHD shell model which provides the conservation of MHD conservation laws;
temperature fluctuation can also be included into the shell model), the main expected problem
here is the matching of grids and shell models. We consider this as our main task in the future.
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