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At present, the liquid core of the Earth represents an
object of intense interdisciplinary investigation. Since
this part of the Earth is responsible for the generation of
the planetary magnetic field, it is no wonder that several
models of magnetic hydrodynamic (MHD) convection
in the liquid core were proposed within recent years
([1] and references therein). Three-dimensional dynamo
models that are known to date and based on mecha-
nisms of thermal (concentration) convection (see, for
example [2–4]) make it possible to reproduce several
observed features of the geomagnetic field, such as spa-
tial spectrum of the geomagnetic field, geomagnetic
field inversions, and prevalence of magnetic energy
over the kinetic energy of convective motions. Esti-
mates of the velocity and direction of rotation of the
Earth’s solid core (with respect to the mantle), based on
models including the mechanism of solid core rotation,
are compatible with seismological data [5]. The prob-
lem of small values of diffusion coefficients is one of
the main difficulties encountered in the simulation of
MHD processes in the Earth’s liquid core. In other words,
information on a wide range of spatiotemporal scales is
necessary for describing processes in the liquid core. The
situation with hydrodynamics is the most critical.
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 [6] (hereafter, index 
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 indicates that
characteristic numbers were calculated using the molecu-
lar values of diffusion coefficients). Such a large value
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of the Reynolds number matches the state of developed
turbulence. Simple evaluations of the number of
degrees of freedom for the Kolmogorov turbulence [7]
in the 3D problem yield 
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; i.e., 
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points are necessary for a discrete description of the
problem. Note that the most detailed present-day mod-
els of the geodynamo [2, 3] provide an average spatial
resolution of ~
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, which is still far from the
required 

 

10

 

–9

 

 

 

L

 

. A similar evaluation of the Peclet num-
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, where the coefficient of molec-

ular thermal conductivity 
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, also points to
the necessity for resolving a large number of scales.
Finally, although evaluation of the magnetic Reynolds

number 

 

 =  ~ 10

 

3

 

 is the lowest of all the

above-mentioned estimates, it also requires the use of
the most modern computers. The foregoing evaluations

of dimensionless parameters 

 

Re

 

M

 

, Pe

 

M

 

, and 

 

 con-
firm the statement that convection in the Earth’s liquid
core is turbulent, and special approaches are needed for
its description.

The available sufficiently wide range of semiempir-
ical models of turbulence (see the review in [8]) allow
us to assess energy dissipation on small scales. The
application of such models is formally reduced to the
computation of effective coefficients of viscosity and
their use in large-scale models. Models of this type are
extensively employed in technology. However, until
recently, they were not adapted to the case of strong
magnetic fields. Let us recall here that magnetic energy
concentrated within the Earth’s core exceeds the kinetic
energy (in the mantle-related reference system) by sev-
eral orders of magnitude. Semiempirical models based
on the integral characteristics of small-scale fields do
not allow us to keep track of spectral properties. In the
present work, we propose to make up for this drawback
with the help of cascade models of turbulence.

Cascade models were proposed in the 1970s [9, 10]
for simulating the Navier–Stokes equation behavior
with the assistance of dynamic systems having a lim-
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ited number of degrees of freedom. The models were
elaborated for variables that corresponded to field fluc-
tuations with wave vector 

 

k

 

 in the range (shell) between
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 = 
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 and 
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n

 

 + 1

 

 = 

 

k

 

0

 

λ

 

n

 

 + 1

 

. Parameter 

 

λ

 

 characterizes
the ratio of two neighboring scales. Usually, 

 

λ

 

 = 2.
Despite the fact that cascade models provide only a
simplified description of turbulence, they adequately
reproduce many of its properties [11, 12]. Based on
separate developments of cascade models for the ther-
mal convection in the Boussinesq approximation [13]
and the MHD turbulence [14], we propose an analog of
complete equations of the dynamo on the basis of ther-
mal convection in terms of cascade models. Let us con-
sider the following dimensionless system that consists of

 

n

 

 ordinary differential equations and describes the evolu-
tion of velocity 

 

U

 

n

 

, temperature 

 

Θ

 

n

 

, and magnetic field 

 

B

 

n

 

:
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Here, time 
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 and velocity 
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 are measured in  and 

units, respectively, where 
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 is the value of the
coefficient of molecular magnetic diffusion. The mag-

netic field is measured in  units, where
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 is the angular velocity of the
Earth’s daily rotation, 
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 is the liquid core
density, and 
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 is the magnetic con-
stant. Ratios of molecular diffusion coefficients to the 

 

η

 

value are specified by the parameters 
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. Dimensionless numbers are specified by the

following relationships: the Rossby number R
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Fig. 1. Evolution of the squares of temperature, velocity,
and magnetic field in the cascade model.
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of volume expansion, g0 is the free fall acceleration, and
∆T is the measure of temperature fluctuations. Our
choice of measurement units makes it possible to obtain
comparatively small dimensionless values of the fields,
which is convenient for calculations. Note that the sys-
tem of ordinary equations (1) is much simpler than the
complete 3D system of MHD equations. However, it
satisfies the basic conservation laws [13, 14] and allows
us to use real physical parameters.

Equation system (1) can easily be solved on parallel
computation systems. We used a cluster of three per-
sonal computers based on Alpha-21264 processors
(each of the physical variables U, Θ, and B was calcu-
lated on a separate processor supported by an MPI 2.0).

Calculations were accomplished for the following
parameter values: EM = 10–15, R0 = 4 · 10–7, RaM = 4 · 107,
γ1 = 1, γ2 = 10–6, and γ3 = 10–5. The last two values cor-
respond to νM =10–6 m2 s–1 and κM = 10–5 m2 s–1. Values
U0 = Vwd  and B0 =10–2 T taken from observations [6]
were used as the boundary conditions. In this case, the
unit of time is 4 · 105 yr.

The temporal evolution of field squares ( ,

, and ) is presented in Fig. 1. The
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pattern corresponds to a stationary quasi-periodical
process with the magnetic energy exceeding the kinetic
energy by two orders of magnitude. Spatial spectra of
three fields are depicted in Fig. 2. Note that the widest
range of scale variations presented in the velocity spec-
trum corresponds to the wave number kn = 233 ≈ 1010 or
the resolution 10–10L ≈ 4 mm, whereas the maximum scale
in the model corresponds to the liquid core dimension L.
The considered scale range completely covers both the
inertial spectral region (corresponding to rectilinear
segments of the spectra) and the dissipation region
(sharp drop regions). Straight lines on the plot corre-

spond to the Kolmogorov spectrum “ ".

In order to evaluate turbulent coefficients of viscos-
ity, let us calculate the dissipation rate in the dimen-
sional form for the fields U, Θ, and B as

(2)

where S = 0.1 is the Smagorinsky coefficient [15] and
Cp = 700 J kg–1 K–1 is the thermal capacity of the
medium [6]. Then the corresponding turbulent diffu-

sion coefficient will be equal to  = (λ4ε)1/3, where
λ corresponds to the minimal n used. In other words, if
we consider a certain large-scale model with limited

resolution kn ≤  (λ ~ ) and want to know the

energy dissipation for large wave numbers kn > , it
is necessary to use evaluations (2). For the large-scale
model in which turbulent values must be used instead
of molecular diffusion coefficients, coefficients before
the Laplacian operator will take the form

(3)

where multipliers fV, fΘ, and fB correspond to εV, εΘ, and
εB parts standing in (2) under the summation sign (εn)
(in this case, all the values under the summation sign
are dimensionless). The temporal behavior of ET, κT,
and ηT is illustrated in Fig. 3. It can be seen that the
presence of turbulence cardinally alters the diffusion
coefficient values. Evaluating the turbulent transport
coefficients as νT = 102, κT = 10–2, and ηT = 20 m2 s–1,
we obtain evaluations for the dimensionless parameters

ReT ~ 10, PeT ~ 105, and  = 102. These values can
quite easily be used for the numerical simulation of
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Fig. 3. Evolution of the coefficient of turbulent thermal con-
ductivity κT, Eckman number ET, and coefficient of turbu-
lent magnetic diffusion ηT.
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large-scale processes of the dynamo. This approach
makes it equally possible to combine cascade models
with large-scale models when both models are simulta-
neously computed with mutual information exchange.

Let us mention some effects that are not taken into
account in our model and may modify our results. We
did not take into account the role of Coriolis forces,
since they do not introduce any energy into the MHD
system. However, they can in principle result in a cer-
tain suppression of turbulence owing to rotation and
make it anisotropic. Our model is also limited by the
following fact. Supposing that the spectrum subse-
quently acquires a dropping pattern, and selecting the
Rayleigh number value in accordance with this condi-
tion, we do not calculate velocity and magnetic field
values in the largest scale but instead adopt them from
observations. Of course, a complete consistent model
of the geodynamo, which includes the description of
both large-scale variables in the grid model framework
and small-scale variables in the cascade model frame-
work, must abandon these limitations in the future.
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Erratum
In Fig. 3 of the paper “Monitoring of the Stressed-and-Strained State…” by V.A. Manuk’yan (Doklady Earth

Sciences, 2002, vol. 384, no. 4, pp. 427–432), caption “refined cycle” should be replaced by “diurnal cycle.” The
author sincerely apologizes to the editorial board and readers. 


