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TURBULENT THERMAL CONVECTION IN A SPHERE
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Convection in a rotating spherical layer in the Boussinesq approximation is considered.
A free rotating solid concentric inner sphere is included. The problem of developed
turbulence is solved using the shell model approach. Two sets of equations are used.
The Navier–Stokes equation and the thermal flux equation are solved on a large scale
due to a coarse grid. The small-scale solution is described by the shell model, which
generates another set of equations. This enables us to estimate the spectral energy flux
on small scales. The turbulent coefficients, depending on the radial direction, are then
calculated and used in the large-scale solution. The behavior of other characteristics
(spectra, helicity) is also studied in time and space. The stabilized solution of the large-
scale convection is obtained for the Rayleigh number Ra = 1014 and the Ekman number
E = 10−6 based on the molecular values of viscosity and thermal diffusivity. The results
correspond to the Reynolds number Re ∼ 109.

1. Introduction. The turbulent phenomena, appearing on small scales,
complicate the computer simulation of convection in planetary interiors. Astro-
physical and geophysical numerical models usually use a finite number, N , of the
space grid points or of the spectral functions. N cannot be too large as the com-
puter process then becomes too long and results cannot practically be achieved.
The control parameter for flows is the Reynolds number Re = V L/νM, where V ,
L are the characteristic velocity and length, respectively, and νM is the molecular
kinematic viscosity. Geodynamo models considering flows with Re = 109 [1] would
required a grid with N ≈ Re9/4 ≈ 1020 nodes (e.g., [2]) for a small-scale turbu-
lence to be resolved. Small-scale subgrid turbulent phenomena cannot be resolved
by a coarse grid using ordinary computers. Of course, this does not mean that
very interesting results cannot be obtained on the macro-scale, where a sensible
large N is used. There are many successful models of this kind. However, such
models usually ignore the solution of the turbulent subgrid phenomena and only
the parameters of the model are chosen basing on the theoretical consideration of
subgrid turbulence. Nevertheless, the subgrid turbulence remains present during
the numerical process, and the solution becomes unstable when it is not properly
resolved on all scales. The numerical simulation becomes completely impossible
and, therefore, the so-called hyperdiffusivity must be introduced (see, e.g., [3]) to
avoid the influence of the small-scale turbulence, causing instabilities due to higher
harmonics. This artificial hyperdiffusivity has to be introduced when models on
the macro-scale are calculated.

Hyperdifusivity can be the solution of the problem for a spectral method.
However, it is difficult to introduce something similar in the numerical process
based on the space grid. In pure hydrodynamic problems solved on the macro-scale
various semi-empirical models of turbulence were applied in the past. For example,
the Kε-models (see, e.g., [4, 5]) were often used in many scientific and technical
applications. However, application to magnetohydrodynamics is not known and,
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moreover, models of this kind provide only averages over all wave numbers, char-
acterizing the turbulence (e.g., viscosity, energy flux on a small scale), that is not
convenient in magnetohydrodynamics. In this paper we attempt to solve only
the hydrodynamic problem, however, still bearing in mind a later application in
magnetohydrodynamics. Here we will use the shell model approach to the subgrid
turbulence first introduced in [6], which was later generalized in [7] for complex
variables and thus is now called the GOY model [8]. In principle, the shell model
is a finite-dimensional model of turbulent motions based on the Fourier expansion,
which gives a correct description of the spectral properties of the turbulent mo-
tions. Moreover, in [9, 10] the authors have developed the shell model approach for
magnetohydrodynamics. Of course, the shell model requires appropriate computer
facilities, but not a very powerful computer. Here we develop the model presented
in [11, 12], where a conjunction of large and small scale models of thermal con-
vection was done for the case of inhomogeneous turbulence. Due to different
normalization of PDE, which provides a better numerical stability, we obtain a
more critical regime of parameters. We also add the dependence of turbulence
properties in the sphere on the r-direction.

2. Large-scale equations. Let the surface of a sphere of radius r0 rotate
with an angular velocity Ω about the z-axis. This sphere contains a concentric
inner solid sphere of radius ri, and the outer spherical layer (ri < r < r0) is
filled with an incompressible liquid (divv = 0). The inner sphere is allowed to
rotate freely about the z-axis due to the viscous torque. The convection in the
Boussinesq approximation in the outer sphere is described by the Navier–Stokes
equation and by the heat flux equation. However, the usual form of these equations
assumes that the diffusion coefficients do not depend on the space coordinates. We
must assume the dependence of kinematic viscosity and thermal diffusivity on the
space coordinates. Particularly, the kinematic viscosity and thermal diffusivity
are composed of molecular and turbulent parts: νM + νTζ(r), κM + κTζ(r). The
molecular values are constant in space and time and the dimensionless function
ζ(r) expresses the radial dependence of the turbulent values (see Section 3). More-
over, we also will assume that the turbulent Prandtl number PrT = νT/κT = 1.
Introducing the small parameter β = νM/νT, we obtain κM/κT = β Pr−1, where
Pr = νM/κM is the molecular Prandtl number. Choosing L = r0 as the unit of
length, velocity v, time t and pressure p can be measured in units of κT/L, L2/κT

and 2ΩρκT, respectively. Denoting the dimensionless functions ν(r) = β + ζ(r),
κ(r) = Pr−1 β + ζ(r), the dimensionless equations in the spherical coordinates
(r, ϑ, ϕ) can be accepted in the form

β−1 PrRo
[
∂v
∂t

+ (v grad)v
]

= − gradp + F + β−1Ediv(ν
↔
e ) (1)

∂T

∂t
+ v · grad(T + T0) = div(κ gradT ), (2)

where force F is composed of the Coriolis and buoyancy forces

F = −1z × v + βP−1RaTr1r, (3)

T0 denotes the prescribed temperature profile [13]:

T0 =
ri/r − 1
1 − ri
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and
↔
e is the rate of the strain tensor. We note that

↔
e= eik =

∂vi

∂xk
+

∂vk

∂xi
, div(ν

↔
e ) =

∂

∂xi
(νeik).

The dimensionless modified Rossby, Ekman and Rayleigh numbers based on the
molecular values of kinematic viscosity and thermal difussivity appear in the equa-
tions

Ro =
κM

2ΩL
, E =

νM

2ΩL
, Ra =

αg0∆TL

2ΩκM
,

where α is the coefficient of thermal expansion, g0 is the gravity acceleration at r =
r0 and ∆T is the temperature drop through the outer liquid sphere. It should be
mentioned that the Rayleigh number for non-rotating bodies is usually assumed in
the form of R̃a = αg0∆TL3/κMνM and Ra = ER̃a. The Ekman number is small in
the geophysical context, and one should keep in mind that Ra � R̃a. Similarly to
“molecular” numbers, we can define the “turbulent” Rossby, RoT, Ekman, ET and
Rayleigh, RaT numbers based on the turbulent values of kinematic viscosity and
thermal diffusivity. The relations between the molecular and turbulent values are
Ro = β Pr−1 RoT, E = βET, Ra = β−1 PrRaT. The inner solid sphere is allowed
to rotate freely about the z-axis due to the viscous torque. The dimensionless
momentum equation for the angular velocity ω of the inner sphere (0 < r < ri)
has the form

PrRoI
∂ω

∂t
= riE

∮
S

[ν(r)eϕr ]r=ri sin ϑ dS, (4)

where I is the moment of inertia of the inner sphere, S denotes its surface and the
stress tensor component is

eϕr =
∂vϕ

∂r
+

1
r sinϑ

∂vr

∂ϕ
− vϕ

r
.

Equations (1)–(4) are accompanied by the non-penetrating and no-slip bound-
ary condition for velocity v and by the zero boundary condition for temperature
perturbation T at both r = ri and r = r0.

Equations (1)–(4) describe properly the large scale convection provided that
the grid mesh used for their solution is sufficiently fine. Problems arise when the
solution changes to a scale smaller than the grid mesh d. Following Kolmogorov’s
assumptions, one has to provide a mesh, which would resolve scales dν ∼ Re−3/4

(e.g., [2]). The amplitude of the characteristic velocity V of the convection is
controlled by the amplitude of the buoyancy force. Namely, the viscous force
is usually very small in volume and the Coriolis force influences the direction of
velocity rather than its amplitude. Thus the estimate ρV 2 ≈ ραg0∆TL takes
place using the dimensionalized Navier–Stokes equation. Hence, the Reynolds
number relates to the modified Rayleigh number as Re = [Ra/(E Pr)]1/2, where
Pr = νM/κM is the (molecular) Prandtl number. Technical problems already arise
if Re > 103 in the practical calculation of the 3D models. These problems can
be solved with the approximate description of the turbulent effect for small-scale
variables using the shell model of turbulence.

3. The shell model and its connection with the large-scale solution.
The idea of the shell model approach is to mimic the Navier–Stokes equation and

the heat flux equation by a dynamical system with nmax variables u1, u2, . . . , unmax

and θ1, θ2, . . . , θnmax , each representing the typical magnitude of velocity and tem-
perature on a certain length scale. The Fourier space is divided into nmax shells
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and each shell kn consists of a set of wave vectors k so that k02n < |k| < k02n+1,
and thus each shell corresponds to an octave of the wave numbers. Variable un is
the velocity difference over length ∼ 1/kn, so that there is one degree of freedom
per shell. The coupling between shells is considered to preserve the main sym-
metries and properties of the Navier–Stokes equation. Particularly, the Coriolis
force is neglected and also the gradient of pressure is not taken into account on
small scales. Therefore, the inertia terms, the buoyancy force and viscous friction
are only considered on small scales. Of course, the shell model is a simplified
form of the turbulence description, nevertheless, it is a reasonable tool to study
turbulence.

We will use the extension of the GOY model for the case of Boussinesq con-
vection [14, 15] for the 3D case in real variables:

β−1 PrRo
dun

dt
= β−1 PrRokn

(
un+1un+2 − 1

4
un−1un+1 − 1

8
un−2un−1

)
+

+β Pr−1 Ra θn − Ek2
nun,

dθn

dt
= kn

(
un+1θn+2 + un−1θn+1 − 1

2
un−2θn−1 + θn+1un+2 −

− 1
2
θn−1un+1 − 1

4
θn−2un−1

)
− βPr−1k2

nθn.

(5)

Even though the shell model equations (5) are an approximation of the original
equations (1)–(2), they conserve the basic properties of these equations. The
system of equations is characterized by three conservation laws in the force-free
limit (E = 0, Ra = 0). The first, Eu, is the kinetic energy-like invariant and the
second, H, is the helicity-like invariant

Eu =
∑

n

|un|2, H =
∑

n

(−1)nkn|un|2, Eθ =
∑

n

|θn|2. (6)

The latter condition is equivalent to the conservation of heat energy.
Equations (5) are integrated for n = nmin, . . . , nmax. The lower limit nmin

is determined by the grid density. Denoting d, the mean value of the distance
between two neigboring grid points knmin = 2π/d. The upper limit nmax must
make it possible to resolve the smallest scale appearing in the calculations, which
is possible if the condition knmax > (Ra/ PrE)3/8 is satisfied.

The correct linkage (conjunction) between the large-scale solution of eqs. (1)–
(4) and the small-scale solution of eqs. (5) is a delicate point of this approach.
Energy dissipation on the subgrid scale and a corresponding energy outflow from
the large-scale solution must be evaluated. For this purpose the values of velocity
and temperature (determined from the large-scale simulation) must be set at two
adjacent points unmin, unmin+1 and θnmin , θnmin+1. These values reflect the current
amplitude of the velocity and temperature oscillations on the typical large scale
resolved by the grid. Denoting v̂(k) and T̂ (k), the Fourier transform of the large-
scale velocity and temperature, respectively, the shell energy

u2
n =

kn+1∫
kn

|v̂(k)|2dk ≈ kn|∆vn|2, θ2
n =

kn+1∫
kn

|T̂ (k)|2dk ≈ kn|∆Tn|2

corresponds to the “energy” contained in the whole octave of the wave num-
bers. For convenience in the numerical process, unmin and unmin+1 (as well as
θnmin and θnmin+1) are rather evaluated via the structural function of the sec-
ond order, usually introduced in spectral methods. For the velocity that follows
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S2(h) = 〈[v(x + h) − v(x)]2〉 at point x, where 〈. . . 〉 denotes averaging over the
whole calculated space, and similarly for the temperature. Assuming that the
turbulence is spherically symmetric, the average is taken within a spherical layer
of radius r. So, for each spherical layer we calculate its shell model. The other
two directions are averaged. The assumption about the spherical symmetry of
turbulence cannot be completely true, but meaningfully simplifies the computer
processing. Nevertheless, for large Ra, not too fast rotation and for the given
form of the temperature profile T0 the assumption is usually true over the long
time scales. By calculating the structural function S2 for the scales corresponding
to knmin , knmin+1, we can find unmin =

√
S2(hnmin), unmin+1 =

√
S2(hnmin+1) and

similarly for the temperature. These values are used in the shell model simulations
(5). The influence of the large-scale solution on the small-scale subgrid turbulence
is completed.

The reverse influence of the small-scale shell model on the large scales is also
important. An effective (turbulent) viscosity νT = νT(r) and a thermal diffusivity
κT = κT(r) are introduced. We will assume that under the regime of developed
turbulence the mean amplitude νT ≈ κT on each sphere of radius r and hence
νT(r) = κT(r). The turbulent Prandtl number PrT = 1 on each sphere. The
dissipation rate ε can be calculated as the total energy dissipated in the shell
model per time unit (dimensionalized form)

ε = νM

nmax∑
n=nmin+2

(knun)2. (7)

According to the Kolmogorov’s assumption, the dissipation scale is ∼ [(νM)3ε−1]1/4.
Comparing the formulae with similar scales in the model of [16], an effective tur-
bulent viscosity, which provides the same dissipation rate in the grid scale, is

νT = 0.1(d4ε)1/3, (8)

where d is the coarse grid mean distance. Taking into account that velocity un,
wave number kn, and d are measured in units of νT/L2, L−1 and L, respectively,
eq. (8) implies

ζ = 0.1

(
βd4

nmax∑
n=nmin+2

k2
nu2

n

)1/3

, (9)

where d, kn and un are now considered to be dimensionless quantities. Thus
equations (9) enable us to calculate (on each sphere of radius r) the dimensionless
functions ν(r) and κ(r) appearing in the large-scale equations (1) and (2).

4. Numerical methods and the results of simulation. The control
volume method is used to solve eqs. (1)–(2) (for details see [17, 18]). The number
of nodes in the spherical staggered grid mesh (r, ϑ, ϕ) is N = 16 in all three
coordinates. However, the homogeneous spherical grid leads to inhomogeneous
distances between the points and, therefore, the estimate of the minimal resolved
scale 1/knmin is not trivial. We assume d = 1/16. It should be noted that in the
vicinity of the inner sphere surface and at the poles this scale is more than one
order smaller and thus we choose nmin = 4 and nmax = 24 to provide resolution on
the diffusion scales. The radius of the inner sphere is considered to be ri = 0.35
and r0 = 1. We note that the turbulent time scale td = (Ra/ PrE)−3/4 is smaller
than the time step used in the large-scale simulation and, therefore, additional
time of integration in the shell model is required.
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Fig. 1. (a) Evolution of the kinetic energy EK of the large-scale motions, (b) variations
of the averaged over r subgrid viscosity β−1ζ and (c) angular velocity ω of the inner shell
plot with Ra = 109, Ro = 10−5, E = 10−6.

.

The main part of the calculation is made on the computer cluster based on
Pentium II computers with two processors. Standard Fortran-95 with MPI for
parallelization is used. The algorithm of the calculations uses the main processor
to calculate the large-scale equation and the results are the velocity and temper-
ature for the minimum resolved grid scale. The obtained values unmin, unmin+1

(θnmin , θnmin+1) are used in the shell model and distributed over the processors
responsible for the turbulent simulation. At each node of the grid in the radial
coordinate a different processor calculates the shell model. The obtained viscosity
for each r-node is returned to the main processor and used in large-scale simula-
tion. Therefore, the time needed to calculate the turbulence is of the same order
as (or larger than) the time of the large-scale model calculation. All processors
were used effectively all the time and the exchange of data between the computers
was one-dimensional only (∼N) and not time consuming.

Below we demonstrate our calculations for β = 10−5, Ro = 10−5, E = 10−6,
Ra = 1014. In our calculations we proceed with more than one diffusion time,
but for convenience of presentation only some time sections of the simulations
are presented. Fig. 1 illustrates the evolution of some averaged over the spherical
volume parameters. Fig. 1a corresponds to a large-scale kinetic energy EK. Note
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that the mean level of kinetic energy 2 × 105 corresponds to Re ∼ 109 based on
molecular viscosity. This should be considered as a very supercritical regime (at
least for the given grid mesh). Turbulence with such Reynolds number could be
resolved using direct numerical simulations (DNS) only with more than 5 × 106

nodes in one direction that is beyond the computing possibilities of contemporary
computers. Fig. 1b shows the variation of the subgrid turbulent viscosity β−1ζ.
The mean level of this quantity is about 5× 106 that corresponds to the turbulent

(effective) modified Rayleigh, Ekman and Rossby numbers RaT ∼ 1010, ET =
5 and RoT = 50, respectively. Note that the molecular Prandtl number was chosen
to be Pr = 0.1. Fig. 1c corresponds to the evolution of the inner sphere’s angular
velocity ω. As far as our regime corresponds to the case of a very slow rotation
when turbulence is taken into account (ET = 5), we do not find any preference
in the direction of ω. We remind the reader that for the cases when E � 1 and
the angular drift of the vertical Busse’s columns starts [13], the mean level of ω
can differ from zero. These speculations are in agreement with the spatial maps
of the temperature and velocity fields illustrated in Fig. 2 (for t = 1). These
plots demonstrate a very regular behavior of the quantities without small-scale
perturbations. We also observe the absence of an Ekman layer (see, in particular,
vϕ). If the calculations have been made with the corresponding values of molecular
kinematic viscosity and thermal diffusivity, highly irregular structures in the fields
would be observed (of course, if the numerical scheme is still stable).

Fig. 3 shows the averaged over the shell volume spectral characteristics for
both grid and subgrid scales for the velocity and temperature fields. The large
(grid) scale is described by a second-order structure function S2 (black circles).
The small (subgrid) scale is characterized by a mean shell energy ∼ 〈u2

n〉, 〈θ2
n〉

(black squares). The conjunction between the grid and subgrid scales occurs at
two points with nmin = 4 and nmin + 1 = 5. The tails of the structure function
(n = 5 ÷ 8) correspond to polar regions, where the spherical grid has a better
resolution. Although we did not force the fields to have the same values for n > 5
for the grid and shell models, their similarity for the both models is obvious.
Considering the shell model spectra, we define the end of the inertial interval of

Fig. 2. From left to right: the snapshots of the temperature field T and velocity field
components (vr, vϑ, vϕ) for the equatorial sections (top row): (−0.28, 0.14), (−138, 94),
(−356, 308), (−203, 87), and meridional sections for axi-symmetrical parts of the fields
(bottom row): (−0.1, 0.1), (−35, 228), (−109, 104), (−101, 50). Numbers in round brack-
ets indicate ranges. The time moment corresponds to t = 1.
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Fig. 3. Structure function S2 (squares) and shell spectrum (circles) for the turbulent
velocity (a) and temperature (b). The straight line corresponds to the Kolmogorov’s
spectrum.

the both spectra for u and θ to be the same at n = 19. The slope of the spectra is
very close to the Kolmogorov’s one “–5/3”. Straight lines in the both plots show
these spectra.

As already mentioned, for every radial layer we used its own shell model in our
simulations. Fig.4 shows turbulent viscosity ζ as a function of radial distance r.
The values are averaged over ϑ and ϕ. The plot shows that the diffusion maximum
repeats the energy distribution over the r-direction. As follows from the plots of
space distributions of the velocity and temperature fields in Fig. 2, main energy
corresponds to position r = 0.7÷0.8 is in agreement with the maximum of diffusion
(ζ) generation in Fig. 4. Other data can be found in the 2D-picture of spatial-
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frequency distribution of small-scale velocity and temperature (Fig. 5).

5. Conclusions. The approach developed in this paper allows the spec-
tral properties to be resolved in the whole range of subgrid scales for given Rayleigh
and Rossby numbers. It is believed that this approach, after a moderate increase
of the number of shells, can be applied to the range of Rayleigh and Rossby num-
bers, which are of common interest to geophysics and astrophysics. Note that our
results correspond to Re ∼ 109, which already has the same magnitude as is ex-
pected in the Earth. The presented model of large-scale convection is a promissing
way for describing the subgrid turbulence due to the solution of the shell model (a
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grid-shell approach). In contrast to the usual semi-empirical models, which pro-
vide only large-scales quantities, this approach provides much more information
about the small-scale phenomena.

The model of convection should be considered as the first step on the way
to the hydromagnetic dynamo model. The control volume method has already
been successfully used for simulating the large-scale hydromagnetic dynamo [18],
and, therefore, we plan to include also the Lorentz force in the shell model. The
problem has already been considered in the shell-model equations in [9, 10, 19]. We
assume the Coriolis force to be neglected in the shell model. This is a reasonable
simplification as this term does not put any energy into the system and takes
part only in the redistribution of kinetic energy. Of course, the full model should
include the effects of anisotropy discussed in detail in [20] and often considered in
astrophysical applications [21]. We predict two possibilities how to do it. The most
systematic way is to produce the shell model equations for each vector component
of the original PDE. Then, in principal, all required properties of the equations
could be provided. The other way is to use some information about integral
spectra and to consider only one “integral” shell equation for all three components.
Following the model developed in [22], one can introduce a dependence of the
spectra on rotation and then only some moderate modification of our present
model is required.

We also realize that the structure function is not the only tool, which can be
used for matching large- and small-scale solutions, and that some more comparison
of our results with the analytical and empirical predictions is required. Our main
goal here was to introduce a general idea of such matching of the two models and
we are continuing with our studies in this field.
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