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Abstract

The 2.5D approach is used to solve the dynamo model in the Boussinesq approximation. Thermal convection in a fast rotating spherical
shell with a free-rotating inner core is considered. In all cases the inner core rotates slightly faster than the outer boundary of the shell.
The presented dynamo model reverses regularly without any external impulse, and the generated magnetic 4eld has the typical dipole
structure at the surface. However, the dipole is aligned rather with the equatorial plane and thus the model can be applied to magnetic
4elds of Neptune and Uranus.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Observations of the magnetic 4elds of Neptune and
Uranus (Russel, 1987) indicate a magnetic dipole, which is
very inclined and thus the magnetic axis is aligned rather
with their equatorial plane than with their rotation axis.
The kinematic study of Holme (1997) shows what features
a magnetic 4eld of this kind could have. This paper is an
attempt to demonstrate such an inclined dipole in the hy-
dromagnetic model with a free-rotating inner core powered
by thermal convection.

There is little hope that we could demonstrate both ro-
tation of the inner core and reversals in a fully 3D model
using less powerful computers than Glatzmaier and Roberts
(1995). On the other hand, 2D axially symmetrical models
are not suitable for this investigation. Namely, the merid-
ional velocity in axially symmetrical models is small com-
pared to the azimuthal velocity (Anufriev and Hejda, 1999).
Hence, di?usion plays the main role in the equation of heat
transfer. The temperature distribution is then axially sym-
metrical and the azimuthal @ow and the !-e?ect associated
with it become small. This indicates that the problem cannot
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be solved within the framework of axisymmetrical models.
Moreover, we cannot expect the magnetic 4eld generated in
an axially symmetrical hydromagnetic dynamo model to be
characterized by a very inclined dipole.

However, a 2.5D model in which just a few non-
symmetrical modes are taken into account is a reasonable
compromise (Jones et al., 1995). Such a 2.5D model is not
as demanding on computer capability and, at the same time,
does not have the drawbacks of the axisymmetrical models
mentioned above. The model of the self-consistent dynamo
with thermal convection is considered in the conductive
outer core and the inner core is considered to have the same
conductivity as the outer core. Therefore, the Lorentz force
appears in the equation of motion. The inner core rotates
freely, however, this rotation is additionally in@uenced by
magnetic torque. This model of the dynamo displays some
features observed in planetary magnetic 4elds.

The most widespread numerical method for dynamo sim-
ulations is based on the decomposition of magnetic and ve-
locity 4elds into toroidal and poloidal parts and their sub-
sequent expansion into spherical harmonics. The numerical
method used in this paper deals directly with the three com-
ponents of the physical 4elds in a spherical system of co-
ordinates (Hejda and Reshetnyak, 1999, 2000; Hejda et al.,
2001). The components are resolved in physical space for
the r- and �-coordinates and expanded into a harmonic se-
ries for the ’-coordinate. To overcome the problem of the
boundary conditions for the magnetic 4eld in the centre, all
physical 4elds F are transformed in the manner of f=r−1F .
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2. Basic equations

Denoting ri the inner core radius, ro = L the outer core
radius and 	 the eddy thermal di?usivity, the unit of time is
taken to be L2=	 and the unit of velocity 	=L. However, we
will solve the magnetohydrodynamic problem and thus it is
useful to introduce L2=� as the unit of time and �=L as the unit
of velocity, where �=(�
)−1 is the magnetic di?usivity (� is
the permeability, 
 the electrical conductivity). In practical
calculations, we will use the Roberts number q=	=�=1 and
thus the “magnetic” or “non-magnetic” measures of time and
velocity are practically equivalent to one another. It is then
useful to choose 2��� for the unit of pressure p, where � is
the density of the outer core and � is the rotation velocity of
the spherical shell. Velocity 4eld v is capable of generating
magnetic 4eld B in the conductive spherical shell, which can
be measured in units of

√
2����. The problem of magnetic

4eld generation with velocity v in the outer spherical shell
(r; �; ’) (ri ¡r¡r0) is described by the following system
of equations in the Boussinesq approximation:

Ro

(
9v
9t + v · ∇v

)
= −∇p+ F + E∇2v; (1)

9B
9t = ∇× (v × B) + ∇2B; (2)

9T
9t + v · ∇(T + T0) = q∇2T; (3)

∇ · v = 0; (4)

∇ · B = 0; (5)

where

F = −1z × v + qRaTr1r + (∇× B) × B (6)

is the combined force (Coriolis, Archimedean and Lorentz).
Here T is the deviation of the temperature from the pre-
scribed temperature pro4le

T0 =
ri=r − 1
1 − ri

;

where the dimensionless inner core radius is taken to be ri =
0:4. The following dimensionless numbers are introduced:
the Ekman number E= �=(2�L2), the Rossby number Ro =
�=(2�L2) and the Rayleigh number Ra = �g0�L=2�	. �
is the kinematic viscosity, � is the coeLcient of volume
expansion,� is the unit of temperature, and g0 is the gravity
acceleration at CMB (r = r0).

The system of Eqs. (1)–(6) is accompanied by non-
penetrating, non-slip boundary conditions for the velocity
and zero boundary conditions for temperature deviations T
at ICB (r= ri) and CMB (r= ro). Vacuum boundary condi-
tions for the magnetic 4eld at CMB are considered. As long
as the conductivity of the inner core is taken to be the same
as the conductivity of the liquid outer core, no additional
condition for the magnetic 4eld at ICB is required.

In general, the inner core can rotate due to the torque of
viscous and magnetic forces. The torque equation applied to
the surface of the inner core reads

RoI
9!
9t = 2�r3i

∫ �

0

[
Er
9
9r

(
v’
r

)
+ BrB’

]
r=ri

sin2 � d�;

(7)

where I = (8=15)�r5i is the moment of inertia of the inner
core and the bars above certain symbols denote the average
values over ’.

The so-called grid-spectral method is applied (Hejda and
Reshetnyak, 1999, 2000; Hejda et al., 2001) to solve Eqs.
(1)–(7). Also, this technique for a staggered grid is used in
Gilman and Miller (1981). All physical 4elds F(r; �; ’; t)
are decomposed into Fourier series in terms of the azimuthal
coordinate ’ with coeLcients that depend on time t and also
on the other spherical variables (r; �). To obtain the zero
boundary conditions for the magnetic 4eld in the centre, an
additional transformation of the 4elds with the factor r−1 is
used:

f(r; �; ’; t) = r−1
M∑
m=0

Fcm cosm’+ Fsm sinm’: (8)

Eq. (8) is substituted into the system of Eqs. (1)–(7) and
the system is discretized on the non-staggered (r; �)-grid
with the central second-order derivative approximation. We
obtain a system of linear algebraic equations in which the
second-order terms in space are treated implicitly using the
Gauss–Seidel scheme. All details such as the boundary con-
ditions in the centre of the sphere and at the axis, as well as
numerous tests of magnetic 4eld generation, can be found in
Hejda and Reshetnyak (2000). Spatial time splitting (frac-
tional step method, see, e.g., Heinrich and Pepper, 1999;
Canuto et al., 1988) for the solution of the Navier–Stokes
equation is also applied (Hejda et al., 2001).

3. Computer simulation

The equations of thermal convection (1), (3), (4) and
(6) without the Lorentz force were tested for the critical
Rayleigh numbers for the threshold of thermal convection
and the free-decay mode test was also carried out. Addi-
tionally, we used the analytical solution of the free-decay
modes of the Navier–Stokes equation with non-slip,
non-penetrating boundary conditions to compare our nu-
merical results to a similar stress-free case by Rheinhardt
(1997). Thermal convection was studied in many previous
papers (see, e.g., Busse, 1970; Busse and Finnochi, 1993),
however, a free rotating core was never considered. There-
fore, Eqs. (1), (3), (4), (6) and (7) were solved in orders
of thermal convection, to be numerically investigated with-
out the presence of any magnetic 4eld. The Lorentz force
and the magnetic torque were omitted in Eqs. (6) and (7),
respectively. The main purpose of this “non-magnetic” ap-
proach was to 4nd suitable convection depending on the
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Ekman and Rayleigh numbers and to investigate the be-
haviour of the inner core rotation velocity !. The Ekman
number and Rossby numbers were chosen to be equal to
one another and the Rayleigh number was decreased with
decreasing Ekman (Rossby) number to keep the ratio Ra=Ro

constant. This enables us to see the behaviour of the so-
lution in which the parameters with the buoyancy, inertial
and viscous terms do not change with decreasing E = Ro

and the amplitude of the Coriolis force increases due to
increasing rotation in Eq. (6).

Although only a maximum of 4 azimuthal modes were
used (m = 0; 1; 2; 3) with a resolution of 25 mesh points
in r and �, the obtained solution was not in contradiction
with the 4ndings of previous studies of thermal convection
(see, e.g., Busse, 1970). The numerically stabilized solu-
tions we found were quasi-periodical in all cases. The tem-
perature distribution T within the outer core is characterized
by equatorial quasi-symmetry with the typical foci of posi-
tive and negative values which appear and disappear during
the quasi-period and which move in the ’-direction at the
same time. The positive values of T appear more at ICB
than at CMB. The changing foci in the equatorial plane are
characterized by a quadrupole quasi-symmetry. The essen-
tial feature of all these solutions was that the rotation of the
inner core was positive relative to the reference frame 4xed
to CMB.

One of the quasi-steady states of the solved thermal con-
vection (Ra = 320; E = 3:2 × 10−3; Ra=Ro = 105; q = 1)
was chosen as a “starter” for the solution of the fully mag-
netohydrodynamic problem. We used the same resolution
as in the “non-magnetic” case with four wave numbers
m = 0; 1; 2; 3. The solution oscillates, but these oscillations
cannot be called quasi-periodical. The mean value of ! is
slightly smaller than in the non-magnetic case, but the ampli-
tude of its ocillations is larger and comparable to the value it-
self (see Fig. 1). Although the evolution of ! becomes more
irregular, the rotation of the inner core remains easternly as
in the non-magnetic case. The kinetic energy Ek in the mag-
netic case is slightly smaller than in the non-magnetic case,
however, the magnetic case is characterized by the magnetic
energy Em of the same order of magnitude as the kinetic en-
ergy (Ek ∼ Em). This can be called the weak 4eld regime in
contrast to the usual strong 4eld regime Ek�Em. The snap-
shots of the temperature, velocity and magnetic 4eld of this
case are displayed in Figs 2–4.

4. Applications to the planets Uranus and Neptune

Although a simple 2.5D model is not capable of mod-
elling the subtle features of planetary magnetic 4elds, it can
contribute to a better understanding of some global charac-
teristics.

As mentioned in the previous section, the inner core rota-
tion was always faster than the rotation of the mantle in all
regimes considered. This fact was demonstrated for the 4rst

Fig. 1. Results of calculations with Ra = 320 and Ro = E = 3:2 × 10−3.
Time evolution of: (a) magnetic energy Em ∼ R−1

o B2 of the system; (b)
kinetic energy Ek ∼ v2 of the system (the dotted line corresponds to
the non-magnetic case with the same Ra and E); (c) inner core angular
velocity; (d) magnetic dipole (g1

0 Gauss coeLcient).

Fig. 2. The snapshots of the temperature 4eld for Ra = 320 and
Ro = E = 3:2 × 10−3. (a) equatorial section; (b) meridional section
The isolines correspond to the homogeneous distribution in ranges:
(−0:9; 0:07); (−0:4; 0:5).

time by Glatzmaier and Roberts (1995) in their model of the
geodynamo and veri4ed later by seismological data (Song
and Richards, 1996) for the Earth, although there still is a
high degree of uncertainty in the observations of the angular
velocity. In contrast to the strong 4eld model by Glatzmaier
and Roberts (1995), our model covers non-magnetic and
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Fig. 3. The snapshots of the velocity components for Ra = 320 and
Ro = E = 3:2 × 10−3. The isolines correspond to the homogeneous
distribution of the presented 4elds in ranges: (a) equatorial section
vr ∈ (−40:7; 41:3), v� ∈ (−11:0; 21:0), v’ ∈ (−50:4; 52:5); (b) meridional
section vr ∈ (−8:9; 70:6), v� ∈ (−25:4; 46:1), v’ ∈ (−28:0; 54:3).

weak magnetic regimes of convection, Fig. 1. Thus we can
say that the magnetic 4eld has negligible in@uence on the
direction of the inner core rotation relative to the mantle in
models where viscous torque at the inner core boundary is
not neglected.

One of the important characteristics of the magnetic 4eld
is the Gauss spectrum. Since the computed magnetic 4eld
varies in time, we have calculated the Gauss coeLcients
by integrating over the entire time interval (Fig. 5). While
the ratio of the dipole to the quadrupole resembles that of
the geomagnetic 4eld, the octupole is quite larger. A deeper
scrutiny of the dipole structure shows that the asymmetric
dipole coeLcients g1

1; h
1
1 are larger than g1

0, and the dipole

Fig. 4. The snapshots of the magnetic 4eld components for Ra = 320
and Ro = E = 3:2 × 10−3. The isolines correspond to the homoge-
neous distribution of the presented 4elds in ranges: (a) equatorial section
Br ∈ (−26:8; 52:0), B� ∈ (−9:5; 16:3), B’ ∈ (−38:8; 44:1); (b) meridional
section Br ∈ (−23:5; 33:4), B� ∈ (−25:2; 25:8); B’ ∈ (−17:2; 44:1).

thus lies near the equatorial plane. This means that the
change of sign of coeLcient g1

0 does not represent 4eld re-
versals in the sense of the geomagnetic 4eld behaviour (from
one geographical pole to the other) but just a variation of
about 20◦ around the equator (Fig. 6).

The generation of magnetic 4elds with equatorial dipole
symmetry became a subject of interest after Voyager II had
revealed strong asymmetry in the magnetic 4eld of Uranus.
All strong planetary magnetic 4elds known before this
discovery (Earth, Mercury, Jupiter, Saturn) were found
to be dominantly dipolar with the dipole axis close to the
rotation axis. The strong symmetry along the rotation axis
was an “accepted paradigm” for the morphology of
planetary 4elds. When Voyager II observed the di?erent
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Fig. 5. M-spectrum of the 4elds integrated over the volume and Gauss
spectrum of the magnetic 4eld at planetary surface.

Fig. 6. Latitude dependence of the virtual dipole (Gauss coeLcient g1
0)

in time.

4eld geometry of Uranus’ magnetic 4eld in 1986, it was
speculated that the 4eld could be just in the process of
reversal (Russel, 1987), but this rather unlikely hypothesis
became even less probable after the observation of a similar
4eld structure on Neptune.

The limited collection of data (Voyager II was in the mag-
netosphere of Uranus for 16 h, and in that of Neptune for
38 h) could raise the question of the reliability of their inter-
pretation. Nevertheless, a thorough analysis accomplished
by Holme and Bloxham (1996) has shown that the main
features described by previous models, i.e the large dipole
tilts and non-dipole dominance of the 4eld, are robust. They
have estimated the dipole tilt of Uranus at 56◦ and of Nep-
tune at 43◦. Their analysis also suggests that the toroidal
4eld that would be required to achieve a magnetospheric
balance in the dynamo region would result in ohmic dissi-
pation greater that the observed surface heat @ow. Accord-
ing to their conclusions there are two possible explanations
for the Uranus and Neptune 4eld morphologies: an energet-
ically limited dynamo and a chaotically reversing dynamo.

The 4rst hypothesis was further studied on kinematic dy-
namo models by Holme (1997) and Gubbins et al. (1999).
Holme (1997) found that magnetic modes with equato-
rial symmetry are preferred for weak di?erential rotation,
whereas axial solutions are preferred when the toroidal ve-
locity is dominant. Gubbins et al. (1999) investigated the
general conditions for the existence of dipole/quadrupole
magnetic 4elds with axial/equatorial symmetry. With regard
to equatorial symmetry, they showed that the dipole mode
is preferred for small di?erential rotations and meridional
circulation. No equatorial quadrupole solutions were found.
Holme (1997) also showed that the symmetry of the mag-
netic 4eld was not in@uenced by the presence or absence of
the inner core and that there was a small di?erence between
conducting and insulating inner cores. On the other hand,
the solution was found to be highly sensitive to the radial
dependence of the @ow.

Holme (1997) ends his paper with the question whether
the kinematic model can be used to provide insight into the
dynamical problems. Our hydromagnetic calculations give
a positive answer. Looking at Fig. 3, one can see that all
velocity components are of the same order of magnitude.
The radial component is comparable to the other velocity
components and thus there is no preference in the toroidal
velocity. The distinctly longitudinal dependence of the az-
imuthal velocity precludes the existence of any strong di?er-
ential rotation. The solution we have obtained possesses all
attributes of a weak magnetic 4eld dynamo: the toroidal and
poloidal components are of the same order and the same is
true for the magnetic and kinematic energies. We have also
shown that the dipole magnetic 4eld with equatorial symme-
try is dynamically sustainable for a suLciently long period
of time. Our results thus show that the existence of Uranus-
and Neptune-like dynamos can be understood within the
scope of weak magnetic 4eld dynamo models.

5. Conclusions

We have demonstrated that the 2.5D approach to hydro-
magnetic dynamo modelling is a useful tool for a better
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understanding of several observed phenomena. It represents
a suitable complement to the most advanced 3D models
by Glatzmaier and Roberts (1996) or Kuang and Bloxham
(1997), which are computationally very expensive and can-
not, therefore, be used to explore the entire possible param-
eter space.

One issue discussed in this paper was the eastward inner
core rotation. This was demonstrated for the 4rst time by
Glatzmaier and Roberts (1995) and veri4ed later by direct
seismic observations (Song and Richards, 1996); see also
a recent discussion of this problem by Laske and Masters
(1999), Vidale et al. (2000). The crucial point of our results
is that even in non-magnetic (or weak magnetic) regimes
the preferable direction of the inner core rotation is east-
ward. Note that in the model by Glatzmaier and Roberts
(1995) the magnetic torque is dominant. The same results
concerning the eastward inner core rotation were obtained
from the “pure magnetic” model by Kuang and Bloxham
(1997), where stress-free boundary conditions were used
and, hence, no viscous torque at ICB was accepted at all.

Another important conclusion is related to the Gauss mag-
netic spectrum. The calculation of asymmetric Gauss coeL-
cients revealed equatorial symmetry in the magnetic dipole.
This structure was observed in the magnetic 4elds of Uranus
and Neptune. Our results contribute to the recent discussion
of the conditions under which the magnetic 4eld with equa-
torial dipole symmetry can be (re)generated. We have also
shown that this weak 4eld model exhibits reversals of the
magnetic 4eld, but contrary to the Earth’s case the positions
of virtual poles remain close to the equatorial plane.
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